
Connection Failures and Data
Manipulation at Non-Thread
Safe Shared JDBC Connection

Pitfalls of sharing a
connection among threads
Here is a review of the potential pitfalls of sharing a single
Connection among multiple threads.

Committing or rolling back a transaction closes all open
ResultSet objects and currently executing Statements,
unless you are using held cursors.If one thread commits,
it closes the Statements and ResultSets of all other
threads using the same connection.
Executing a Statement automatically closes any existing
open ResultSet generated by an earlier execution of that
Statement.If threads share Statements, one thread could
close another’s ResultSet.

In many cases, it is easier to assign each thread to a
distinct Connection. If thread A does database work that is
not transactionally related to thread B, assign them to
different Connections. For example, if thread A is associated
with a user input window that allows users to delete hotels
and thread B is associated with a user window that allows
users to view city information, assign those threads to
different Connections. That way, when thread A commits, it
does not affect any ResultSets or Statements of thread B.

Another strategy is to have one thread do queries and another
thread do updates. Queries hold shared locks until the
transaction commits in SERIALIZABLE isolation mode; use

https://kutayzorlu.com/database/workbench-backup-dump-ssh-remote-root/connection-failures-and-data-manipulation-at-non-thread-safe-shared-jdbc-connection-15394.html
https://kutayzorlu.com/database/workbench-backup-dump-ssh-remote-root/connection-failures-and-data-manipulation-at-non-thread-safe-shared-jdbc-connection-15394.html
https://kutayzorlu.com/database/workbench-backup-dump-ssh-remote-root/connection-failures-and-data-manipulation-at-non-thread-safe-shared-jdbc-connection-15394.html

READ_COMMITTED instead.

Yet another strategy is to have only one thread do database
access. Have other threads get information from the database
access thread.

Multiple threads are permitted to share a Connection,
Statement, or ResultSet. However, the application programmer
must ensure that one thread does not affect the behavior of
the others.

Recommended Practices (at Oracle)
Here are some tips for avoiding unexpected behavior:

Avoid sharing Statements (and their ResultSets) among
threads.
Each time a thread executes a Statement, it should
process the results before relinquishing the Connection.
Each time a thread accesses the Connection, it should
consistently commit or not, depending on application
protocol.
Have one thread be the “managing” database Connection
thread that should handle the higher-level tasks, such
as establishing the Connection, committing, rolling
back, changing Connection properties such as auto-
commit, closing the Connection, shutting down the
database (in an embedded environment), and so on.
Close ResultSets and Statements that are no longer
needed in order to release resources.

->
docs.oracle.com/javadb/10.8.3.0/devguide/cdevconce
pts89498.html

Ref : oracle.com

