
Aspect oriented programming
(AOP)
In computing, aspect-oriented programming (AOP) is a
patented[1] programming paradigm that aims to increase
modularity by allowing the separation of cross-cutting
concerns. It does so by adding additional behavior to existing
code (an advice) without modifying the code itself, instead
separately specifying which code is modified via a “pointcut”
specification, such as “log all function calls when the
function’s name begins with ‘set'”. This allows behaviors that
are not central to the business logic (such as logging) to be
added to a program without cluttering the code core to the
functionality. AOP forms a basis for aspect-oriented software
development.

AOP includes programming methods and tools that support the
modularization of concerns at the level of the source code,
while “aspect-oriented software development” refers to a whole
engineering discipline.

Aspect-oriented programming entails breaking down program
logic into distinct parts (so-called concerns, cohesive areas
of functionality). Nearly all programming paradigms support
some level of grouping and encapsulation of concerns into
separate, independent entities by providing abstractions
(e.g., functions, procedures, modules, classes, methods) that
can be used for implementing, abstracting and composing these
concerns. Some concerns “cut across” multiple abstractions in
a program, and defy these forms of implementation. These
concerns are called cross-cutting concerns.

Logging exemplifies a crosscutting concern because a logging
strategy necessarily affects every logged part of the system.
Logging thereby crosscuts all logged classes and methods.

https://kutayzorlu.com/software-development/java/introduction-to-java-programming/dictionary-technical-terms/aspect-oriented-programming-aop-204.html
https://kutayzorlu.com/software-development/java/introduction-to-java-programming/dictionary-technical-terms/aspect-oriented-programming-aop-204.html

All AOP implementations have some crosscutting expressions
that encapsulate each concern in one place. The difference
between implementations lies in the power, safety, and
usability of the constructs provided. For example,
interceptors that specify the methods to intercept express a
limited form of crosscutting, without much support for type-
safety or debugging. AspectJ has a number of such expressions
and encapsulates them in a special class, an aspect. For
example, an aspect can alter the behavior of the base code
(the non-aspect part of a program) by applying advice
(additional behavior) at various join points (points in a
program) specified in a quantification or query called a
pointcut (that detects whether a given join point matches). An
aspect can also make binary-compatible structural changes to
other classes, like adding members or parents.

void transfer(Account fromAcc, Account toAcc, int amount, User
user,
 Logger logger) throws Exception {
 logger.info("Transferring money…");

 if (!isUserAuthorised(user, fromAcc)) {
 logger.info("User has no permission.");
 throw new UnauthorisedUserException();
 }

 if (fromAcc.getBalance() < amount) {
 logger.info("Insufficient funds.");
 throw new InsufficientFundsException();
 }

 fromAcc.withdraw(amount);
 toAcc.deposit(amount);

 database.commitChanges(); // Atomic operation.

 logger.info("Transaction successful.");
}

