
how to Configure and TEST
Apache for Maximum
Performance

 Tested , By Kutay ZORLU ,,
Apache is an open-source HTTP server implementation. It is the
most popular web server on the Internet; the December 2005 Web
Server Survey conducted by Netcraft [1] shows that about 70%
of the web sites on Internet are using Apache.

Apache server performance can be improved by adding additional
hardware resources such as RAM, faster CPU, etc. But most of
the time, the same result can be achieved by custom
configuration of the server. This article looks into getting
maximum performance out of Apache with the existing hardware
resources, specifically on Linux systems. Of course, it is
assumed that there is enough hardware resources – especially
enough RAM that the server isn’t swapping frequently. First
two sections look into various Compile-Time and Run-Time
configuration options. The Run-Time section assumes that
Apache is compiled with prefork MPM. HTTP compression and
caching is discussed next. Finally, using separate servers for
serving static and dynamic contents is covered. Basic
knowledge of compiling and configuring Apache and Linux are
assumed.

2 Compile-Time Configuration Options

2.1 Load only the required modules:
The Apache HTTP Server is a modular program where the
administrator can choose the functions to be included in the

https://kutayzorlu.com/operating-systems/how-to-configure-and-test-apache-for-maximum-performance-339.html
https://kutayzorlu.com/operating-systems/how-to-configure-and-test-apache-for-maximum-performance-339.html
https://kutayzorlu.com/operating-systems/how-to-configure-and-test-apache-for-maximum-performance-339.html

server by selecting a set of modules [2]. The modules can be
compiled either statically as part of the ‘httpd’ binary, or
as Dynamic Shared Objects (DSOs). DSO modules can either be
compiled when the server is built, or added later via
the apxs utility, which allows compilation at a later date.
The mod_so module must be statically compiled into the Apache
core to enable DSO support.

Run Apache with only the required modules. This reduces the
memory footprint, which improves the server performance.
Statically compiling modules will save RAM that’s used for
supporting dynamically loaded modules, but you would have to
recompile Apache to add or remove a module. This is where the
DSO mechanism comes handy. Once the mod_so module is
statically compiled, any other module can be added or dropped
using the ‘LoadModule’ command in the ‘httpd.conf’ file. Of
course, you will have to compile the modules using ‘apxs’ if
they weren’t compiled when the server was built.

2.2 Choose appropriate MPM:
The Apache server ships with a selection of Multi-Processing
Modules (MPMs) which are responsible for binding to network
ports on the machine, accepting requests, and dispatching
children to handle the requests [3]. Only one MPM can be
loaded into the server at any time.

Choosing an MPM depends on various factors, such as whether
the OS supports threads, how much memory is available,
scalability versus stability, whether non-thread-safe third-
party modules are used, etc.

Linux systems can choose to use a threaded MPM like worker or
a non-threaded MPM like prefork:

The worker MPM uses multiple child processes. It’s multi-
threaded within each child, and each thread handles a single
connection. Worker is fast and highly scalable and the memory
footprint is comparatively low. It’s well suited for multiple

processors. On the other hand, worker is less tolerant of
faulty modules, and a faulty thread can affect all the threads
in a child process.

The prefork MPM uses multiple child processes, each child
handles one connection at a time. Prefork is well suited for
single or double CPU systems, speed is comparable to that of
worker, and it’s highly tolerant of faulty modules and
crashing children – but the memory usage is high, and more
traffic leads to greater memory usage.

3 Run-Time Configuration Options

3.1 DNS lookup:
The HostnameLookups directive enables DNS lookup so that
hostnames can be logged instead of the IP address. This adds
latency to every request since the DNS lookup has to be
completed before the request is finished. HostnameLookups is
Off by default in Apache 1.3 and above. Leave it Off and use
post-processing program such as logresolve to resolve IP
addresses in Apache’s access logfiles. Logresolve ships with
Apache.

When using ‘Allow from’ or ‘Deny from’ directives, use an IP
address instead of a domain name or a hostname. Otherwise, a
double DNS lookup is performed to make sure that the domain
name or the hostname is not being spoofed.

3.2 AllowOverride:
If AllowOverride is not set to ‘None’, then Apache will
attempt to open the .htaccess file (as specified by
AccessFileName directive) in each directory that it visits.
For example:
[crayon-663325172551a553859773/]
If a request is made for URI /index.html, then Apache will
attempt to open /.htaccess, /var/.htaccess,
/var/www/.htaccess, and /var/www/html/.htaccess. These

additional file system lookups add to the latency. If
.htaccess is required for a particular directory, then enable
it for that directory alone.

3.3 FollowSymLinks and SymLinksIfOwnerMatch:
If FollowSymLinks option is set, then the server will follow
symbolic links in this directory. If SymLinksIfOwnerMatch is
set, then the server will follow symbolic links only if the
target file or directory is owned by the same user as the
link.

If SymLinksIfOwnerMatch is set, then Apache will have to issue
additional system calls to verify whether the ownership of the
link and the target file match. Additional system calls are
also needed when FollowSymLinks is NOT set.
For example:
[crayon-6633251725523814100704/]
For a request made for URI /index.html, Apache will perform
lstat() on /var, /var/www, /var/www/html, and
/var/www/html/index.html. These additional system calls will
add to the latency. The lstat results are not cached, so they
will occur on every request.

For maximum performance, set FollowSymLinks everywhere and
never set SymLinksIfOwnerMatch. Or else, if
SymLinksIfOwnerMatch is required for a directory, then set it
for that directory alone.

3.4 Content Negotiation:
Avoid content negotiation for fast response. If content
negotiation is required for the site, use type-map files
rather than Options MultiViews directive. With MultiViews,
Apache has to scan the directory for files, which adds to the
latency.

3.5 MaxClients:
The MaxClients sets the limit on maximum simultaneous requests

that can be supported by the server; no more than this number
of child processes are spawned. It shouldn’t be set too low;
otherwise, an ever-increasing number of connections are
deferred to the queue and eventually time-out while the server
resources are left unused. Setting this too high, on the other
hand, will cause the server to start swapping which will cause
the response time to degrade drastically. The appropriate
value for MaxClients can be calculated as:

[4] MaxClients = Total RAM dedicated to the web server / Max
child process size

The child process size for serving static file is about 2-3M.
For dynamic content such as PHP, it may be around 15M. The RSS
column
in “ps -ylC httpd --sort:rss” shows non-swapped physical
memory usage by Apache processes in kiloBytes.

If there are more concurrent users than MaxClients, the
requests will be queued up to a number based on ListenBacklog
directive. Increase ServerLimit to set MaxClients above 256.

3.6 MinSpareServers, MaxSpareServers, and
StartServers:
MaxSpareServers and MinSpareServers determine how many child
processes to keep active while waiting for requests. If the
MinSpareServers is too low and a bunch of requests come in,
Apache will have to spawn additional child processes to serve
the requests. Creating child processes is relatively
expensive. If the server is busy creating child processes, it
won’t be able to serve the client requests immediately.
MaxSpareServers shouldn’t be set too high: too many child
processes will consume resources unnecessarily.

Tune MinSpareServers and MaxSpareServers so that Apache need
not spawn more than 4 child processes per second (Apache can
spawn a maximum of 32 child processes per second). When more
than 4 children are spawned per second, a message will be

logged in the ErrorLog.

The StartServers directive sets the number of child server
processes created on startup. Apache will continue creating
child processes until the MinSpareServers setting is reached.
This doesn’t have much effect on performance if the server
isn’t restarted frequently. If there are lot of
requests and Apache is restarted frequently, set this to a
relatively high value.

3.7 MaxRequestsPerChild:
The MaxRequestsPerChild directive sets the limit on the number
of requests that an individual child server process will
handle. After MaxRequestsPerChild requests, the child process
will die. It’s set to 0 by default, the child process will
never expire. It is appropriate to set this to a value of few
thousands. This can help prevent memory leakage, since the
process dies after serving a certain number of requests. Don’t
set this too low, since creating new processes does have
overhead.

3.8 KeepAlive and KeepAliveTimeout:
The KeepAlive directive allows multiple requests to be sent
over the same TCP connection. This is particularly useful
while serving HTML pages with lot of images. If KeepAlive is
set to Off, then for each images, a separate TCP connection
has to be made. Overhead due to establishing TCP connection
can be eliminated by turning On KeepAlive.

KeepAliveTimeout determines how long to wait for the next
request. Set this to a low value, perhaps between two to five
seconds. If it is set too high, child processed are tied up
waiting for the client when they could be used for serving new
clients.

4 HTTP Compression & Caching
HTTP compression is completely specified in HTTP/1.1. The
server uses either the gzip or the deflate encoding method to
the response payload before it is sent to the client. Client
then decompresses the payload. There is no need to install any
additional software on the client side since all major
browsers support these methods. Using compression will save
bandwidth and improve response time; studies have found a mean
gain of %75.2 when using compression [5].

HTTP Compression can be enabled in Apache using
the mod_deflate module. Payload is compressed only if the
browser requests compression, otherwise uncompressed content
is served. A compression-aware browser inform the server that
it prefer compressed content through the HTTP request header –
“Accept-Encoding: gzip,deflate“. Then the server responds with
compressed payload and the response header set to “Content-
Encoding: gzip“.

The following example uses telnet to view request and response
headers:
[crayon-6633251725527743002917/]
In caching, a copy of the data is stored at the client or in a
proxy server so that it need not be retrieved frequently from
the server. This will save bandwidth, decrease load on the
server, and reduce latency. Cache control is done through HTTP
headers. In Apache, this can be accomplished
through mod_expires and mod_headersmodules. There is also
server side caching, in which the most frequently-accessed
content is stored in memory so that it can be served fast. The
module mod_cache can be used for server side caching; it is
production stable in Apache version 2.2.

5 Separate server for static and dynamic

content
Apache processes serving dynamic content take from 3MB to 20MB
of RAM. The size grows to accommodate the content being served
and never decreases until the process dies. As an example,
let’s say an Apache process grows to 20MB while serving some
dynamic content. After completing the request, it is free to
serve any other request. If a request for an image comes in,
then this 20MB process is serving static content – which could
be served just as well by a 1MB process. As a result, memory
is used inefficiently.

Use a tiny Apache (with minimum modules statically compiled)
as the front-end server to serve static contents. Requests for
dynamic content should be forwarded to the heavy-duty Apache
(compiled with all required modules). Using a light front-end
server has the advantage that the static contents are served
fast without much memory usage and only the dynamic contents
are passed over to the big server.

Request forwarding can be achieved by
using mod_proxy and mod_rewrite modules. Suppose there is a
lightweight Apache server listening to port 80 and a
heavyweight Apache listening on port 8088. Then the following
configuration in the lightweight Apache can be used to forward
all requests (except requests for images) to the heavyweight
server:
[9]
[crayon-663325172552a940231376/]
All requests, except for images, will be proxied to the
backend server. The response is received by the frontend
server and supplied to the client. As far as client is
concerned, all the responses seem to come from a single
server.

6 Conclusion
Configuring Apache for maximum performance is tricky; there
are no hard and fast rules. Much depends on understanding the
web server requirements and experimenting with various
available options. Use tools like ab and httperf to measure
the web server performance. Lightweight servers such
as tux or thttpd can also be used as the front-end server. If
a database server is used, make sure it is optimized so that
it won’t create any bottlenecks. In case of MySQL, mtop can be
used to monitor slow queries. Performance of PHP scripts can
be improved by using a PHP caching product such as Turck
MMCache. It eliminates overhead due to compiling by caching
the PHP scripts in a compiled state.

