
Producer and consumer with a
Circular Buffer

/*
Code revised from Book published by
(C) Copyright 1992-2006 by Deitel & Associates, Inc. and
Pearson Education, Inc. All Rights Reserved.

*/
using System;
using System.Threading;

public class Producer
{
private CircularBuffer sharedLocation;
private Random randomSleepTime;

public Producer(CircularBuffer shared, Random random)
{
sharedLocation = shared;
randomSleepTime = random;
}
public void Produce()
{
for (int count = 1; count <= 10; count++) { Thread.Sleep(
randomSleepTime.Next(1, 3001)); sharedLocation.Buffer =
count; } Console.WriteLine("{0} done producing. Terminating
{0}.", Thread.CurrentThread.Name); } } public class Consumer
{ private CircularBuffer sharedLocation; private Random
randomSleepTime; public Consumer(CircularBuffer shared,
Random random) { sharedLocation = shared; randomSleepTime =
random; } public void Consume() { int sum = 0; for (int count
= 1; count <= 10; count++) { Thread.Sleep(
randomSleepTime.Next(1, 3001)); sum +=

https://kutayzorlu.com/software-development/asp-net-csharp-cs-webservice-api-soap-rest/thread/producer-and-consumer-with-a-circular-buffer-4833.html
https://kutayzorlu.com/software-development/asp-net-csharp-cs-webservice-api-soap-rest/thread/producer-and-consumer-with-a-circular-buffer-4833.html

sharedLocation.Buffer; } Console.WriteLine("{0} read values
totaling: {1}. Terminating {0}.", Thread.CurrentThread.Name,
sum); } } public class CircularBuffer { private int[] buffers
= { -1, -1, -1 }; private int occupiedBufferCount = 0; private
int readLocation = 0; private int writeLocation = 0; public
int Buffer { get { lock (this) { if (occupiedBufferCount ==
0) { Console.Write(" All buffers empty. {0}
waits.",Thread.CurrentThread.Name); Monitor.Wait(this); }
int readValue = buffers[readLocation]; Console.Write(" {0}
reads {1} ",Thread.CurrentThread.Name, buffers[readLocation]
); --occupiedBufferCount; readLocation = (readLocation + 1)
% buffers.Length; Console.Write(CreateStateOutput());
Monitor.Pulse(this); return readValue; } } set { lock (this
) { if (occupiedBufferCount == buffers.Length) {
Console.Write(" All buffers full. {0}
waits.",Thread.CurrentThread.Name); Monitor.Wait(this); }
buffers[writeLocation] = value; Console.Write(" {0} writes
{1} ",Thread.CurrentThread.Name, buffers[writeLocation]);
++occupiedBufferCount; writeLocation = (writeLocation + 1) %
buffers.Length; Console.Write(CreateStateOutput());
Monitor.Pulse(this); } } } public string CreateStateOutput()
{ string output = "(buffers occupied: " + occupiedBufferCount
+ ") buffers: "; for (int i = 0; i < buffers.Length; i++)
output += " " + string.Format("{0,2}", buffers[i]) + " ";
output += " "; output += " "; for (int i = 0; i <
buffers.Length; i++) output += "---- "; output += " "; output
+= " "; for (int i = 0; i < buffers.Length; i++) { if (i ==
writeLocation && writeLocation == readLocation) output += "
WR "; else if (i == writeLocation) output += " W "; else if
(i == readLocation) output += " R "; else output += " "; }
output += " "; return output; } static void Main(string[]
args) { CircularBuffer shared = new CircularBuffer(); Random
random = new Random(); Console.Write(
shared.CreateStateOutput()); Producer producer = new
Producer(shared, random); Consumer consumer = new Consumer(
shared, random); Thread producerThread = new Thread(new
ThreadStart(producer.Produce)); producerThread.Name =

"Producer"; Thread consumerThread = new Thread(new
ThreadStart(consumer.Consume)); consumerThread.Name =
"Consumer"; producerThread.Start(); consumerThread.Start(); }
} [/csharp]

