
Apache Performance Tuning
easiest way
Apache 2.x is a general-purpose webserver, designed to provide
a balance of flexibility, portability, and performance.
Although it has not been designed specifically to set
benchmark records, Apache 2.x is capable of high performance
in many real-world situations.

Compared to Apache 1.3, release 2.x contains many additional
optimizations to increase throughput and scalability. Most of
these improvements are enabled by default. However, there are
compile-time and run-time configuration choices that can
significantly affect performance. This document describes the
options that a server administrator can configure to tune the
performance of an Apache 2.x installation. Some of these
configuration options enable the httpd to better take
advantage of the capabilities of the hardware and OS, while
others allow the administrator to trade functionality for
speed.

For Extra Things , READ APACHE
GUIDE, from
apache.org

Hardware and Operating System
Issues
The single biggest hardware issue affecting webserver
performance is RAM. A webserver should never ever have to
swap, as swapping increases the latency of each request beyond
a point that users consider “fast enough”. This causes users
to hit stop and reload, further increasing the load. You can,

https://kutayzorlu.com/software-development/c-c-plus-language-programming/apache/apache-performance-tuning-easiest-way-341.html
https://kutayzorlu.com/software-development/c-c-plus-language-programming/apache/apache-performance-tuning-easiest-way-341.html

and should, control the MaxClients setting so that your server
does not spawn so many children it starts swapping. This
procedure for doing this is simple: determine the size of your
average Apache process, by looking at your process list via a
tool such as top, and divide this into your total available
memory, leaving some room for other processes.

Beyond that the rest is mundane: get a fast enough CPU, a fast
enough network card, and fast enough disks, where “fast
enough” is something that needs to be determined by
experimentation.

Operating system choice is largely a matter of local concerns.
But some guidelines that have proven generally useful are:

Run the latest stable release and patchlevel of the
operating system that you choose. Many OS suppliers have
introduced significant performance improvements to their
TCP stacks and thread libraries in recent years.
If your OS supports a sendfile(2) system call, make sure
you install the release and/or patches needed to enable
it. (With Linux, for example, this means using Linux 2.4
or later. For early releases of Solaris 8, you may need
to apply a patch.) On systems where it is
available, sendfile enables Apache 2 to deliver static
content faster and with lower CPU utilization.

Run-Time Configuration Issues
Related Modules Related Directives

• mod_dir
• mpm_common
• mod_status

• AllowOverride
• DirectoryIndex
• HostnameLookups

• EnableMMAP
• EnableSendfile

• KeepAliveTimeout
• MaxSpareServers
• MinSpareServers

• Options
• StartServers

HostnameLookups and other DNS
considerations
Prior to Apache 1.3, HostnameLookups defaulted to On. This
adds latency to every request because it requires a DNS lookup
to complete before the request is finished. In Apache 1.3 this
setting defaults to Off. If you need to have addresses in your
log files resolved to hostnames, use the logresolveprogram
that comes with Apache, or one of the numerous log reporting
packages which are available.

It is recommended that you do this sort of postprocessing of
your log files on some machine other than the production web
server machine, in order that this activity not adversely
affect server performance.

If you use any Allow from domain or Deny from
domain directives (i.e., using a hostname, or a domain name,
rather than an IP address) then you will pay for two DNS
lookups (a reverse, followed by a forward lookup to make sure
that the reverse is not being spoofed). For best performance,
therefore, use IP addresses, rather than names, when using
these directives, if possible.

Note that it’s possible to scope the directives, such as
within a section. In this case the DNS lookups are only

performed on requests matching the criteria. Here’s an example
which disables lookups except for .html and .cgi files:

HostnameLookups off

HostnameLookups on

But even still, if you just need DNS names in some CGIs you
could consider doing the gethostbyname call in the specific
CGIs that need it.

FollowSymLinks and SymLinksIfOwnerMatch
Wherever in your URL-space you do not have an Options
FollowSymLinks, or you do have an Options
SymLinksIfOwnerMatch Apache will have to issue extra system
calls to check up on symlinks. One extra call per filename
component. For example, if you had:

DocumentRoot /www/htdocs

Options SymLinksIfOwnerMatch

and a request is made for the URI /index.html. Then Apache
will perform lstat(2) on /www, /www/htdocs,
and /www/htdocs/index.html. The results of these lstats are
never cached, so they will occur on every single request. If
you really desire the symlinks security checking you can do
something like this:

DocumentRoot /www/htdocs

Options FollowSymLinks

Options -FollowSymLinks +SymLinksIfOwnerMatch

This at least avoids the extra checks for
the DocumentRoot path. Note that you’ll need to add similar

sections if you have any Alias or RewriteRule paths outside of
your document root. For highest performance, and no symlink
protection, set FollowSymLinks everywhere, and never
setSymLinksIfOwnerMatch.

AllowOverride
Wherever in your URL-space you allow overrides
(typically .htaccess files) Apache will attempt to
open .htaccess for each filename component. For example,

DocumentRoot /www/htdocs

AllowOverride all

and a request is made for the URI /index.html. Then Apache
will attempt to open /.htaccess, /www/.htaccess,
and /www/htdocs/.htaccess. The solutions are similar to the
previous case of Options FollowSymLinks. For highest
performance use AllowOverride None everywhere in your
filesystem.

Negotiation
If at all possible, avoid content-negotiation if you’re really
interested in every last ounce of performance. In practice the
benefits of negotiation outweigh the performance penalties.
There’s one case where you can speed up the server. Instead of
using a wildcard such as:

DirectoryIndex index

Use a complete list of options:

DirectoryIndex index.cgi index.pl index.shtml index.html

where you list the most common choice first.

Also note that explicitly creating a type-map file provides
better performance than using MultiViews, as the necessary

information can be determined by reading this single file,
rather than having to scan the directory for files.

If your site needs content negotiation consider using type-
map files, rather than the Options MultiViews directive to
accomplish the negotiation. See theContent
Negotiation documentation for a full discussion of the methods
of negotiation, and instructions for creating type-map files.

Memory-mapping
In situations where Apache 2.x needs to look at the contents
of a file being delivered–for example, when doing server-side-
include processing–it normally memory-maps the file if the OS
supports some form of mmap(2).

On some platforms, this memory-mapping improves performance.
However, there are cases where memory-mapping can hurt the
performance or even the stability of the httpd:

On some operating systems, mmap does not scale as well
as read(2) when the number of CPUs increases. On
multiprocessor Solaris servers, for example, Apache 2.x
sometimes delivers server-parsed files faster
when mmap is disabled.
If you memory-map a file located on an NFS-mounted
filesystem and a process on another NFS client machine
deletes or truncates the file, your process may get a
bus error the next time it tries to access the mapped
file content.

For installations where either of these factors applies, you
should use EnableMMAP off to disable the memory-mapping of
delivered files. (Note: This directive can be overridden on a
per-directory basis.)

Sendfile
In situations where Apache 2.x can ignore the contents of the
file to be delivered — for example, when serving static file
content — it normally uses the kernel sendfile support the
file if the OS supports the sendfile(2) operation.

On most platforms, using sendfile improves performance by
eliminating separate read and send mechanics. However, there
are cases where using sendfile can harm the stability of the
httpd:

Some platforms may have broken sendfile support that the
build system did not detect, especially if the binaries
were built on another box and moved to such a machine
with broken sendfile support.
With an NFS-mounted files, the kernel may be unable to
reliably serve the network file through it’s own cache.

For installations where either of these factors applies, you
should use EnableSendfile off to disable sendfile delivery of
file contents. (Note: This directive can be overridden on a
per-directory basis.)

Process Creation
Prior to Apache 1.3 the MinSpareServers, MaxSpareServers,
and StartServers settings all had drastic effects on benchmark
results. In particular, Apache required a “ramp-up” period in
order to reach a number of children sufficient to serve the
load being applied. After the initial spawning
ofStartServers children, only one child per second would be
created to satisfy the MinSpareServers setting. So a server
being accessed by 100 simultaneous clients, using the
default StartServers of 5 would take on the order 95 seconds
to spawn enough children to handle the load. This works fine
in practice on real-life servers, because they aren’t
restarted frequently. But does really poorly on benchmarks

which might only run for ten minutes.

The one-per-second rule was implemented in an effort to avoid
swamping the machine with the startup of new children. If the
machine is busy spawning children it can’t service requests.
But it has such a drastic effect on the perceived performance
of Apache that it had to be replaced. As of Apache 1.3, the
code will relax the one-per-second rule. It will spawn one,
wait a second, then spawn two, wait a second, then spawn four,
and it will continue exponentially until it is spawning 32
children per second. It will stop whenever it satisfies
the MinSpareServers setting.

This appears to be responsive enough that it’s almost
unnecessary to twiddle
the MinSpareServers, MaxSpareServers and StartServers knobs.
When more than 4 children are spawned per second, a message
will be emitted to the ErrorLog. If you see a lot of these
errors then consider tuning these settings. Use
the mod_status output as a guide.

Related to process creation is process death induced by
the MaxRequestsPerChild setting. By default this is 0, which
means that there is no limit to the number of requests handled
per child. If your configuration currently has this set to
some very low number, such as 30, you may want to bump this up
significantly. If you are running SunOS or an old version of
Solaris, limit this to 10000 or so because of memory leaks.

When keep-alives are in use, children will be kept busy doing
nothing waiting for more requests on the already open
connection. The defaultKeepAliveTimeout of 5 seconds attempts
to minimize this effect. The tradeoff here is between network
bandwidth and server resources. In no event should you raise
this above about 60 seconds, as most of the benefits are lost.

Compile-Time Configuration Issues

Choosing an MPM
Apache 2.x supports pluggable concurrency models,
called Multi-Processing Modules (MPMs). When building Apache,
you must choose an MPM to use. There are platform-specific
MPMs for some platforms: beos, mpm_netware, mpmt_os2,
and mpm_winnt. For general Unix-type systems, there are
several MPMs from which to choose. The choice of MPM can
affect the speed and scalability of the httpd:

The worker MPM uses multiple child processes with many
threads each. Each thread handles one connection at a
time. Worker generally is a good choice for high-traffic
servers because it has a smaller memory footprint than
the prefork MPM.
The prefork MPM uses multiple child processes with one
thread each. Each process handles one connection at a
time. On many systems, prefork is comparable in speed to
worker, but it uses more memory. Prefork’s threadless
design has advantages over worker in some situations: it
can be used with non-thread-safe third-party modules,
and it is easier to debug on platforms with poor thread
debugging support.

For more information on these and other MPMs, please see the
MPM documentation.

Modules
Since memory usage is such an important consideration in
performance, you should attempt to eliminate modules that you
are not actually using. If you have built the modules as DSOs,
eliminating modules is a simple matter of commenting out the
associated LoadModule directive for that module. This allows
you to experiment with removing modules, and seeing if your

site still functions in their absense.

If, on the other hand, you have modules statically linked into
your Apache binary, you will need to recompile Apache in order
to remove unwanted modules.

An associated question that arises here is, of course, what
modules you need, and which ones you don’t. The answer here
will, of course, vary from one web site to another. However,
the minimal list of modules which you can get by with tends to
include mod_mime, mod_dir,
and mod_log_config.mod_log_config is, of course, optional, as
you can run a web site without log files. This is, however,
not recommended.

Atomic Operations
Some modules, such as mod_cache and recent development builds
of the worker MPM, use APR’s atomic API. This API provides
atomic operations that can be used for lightweight thread
synchronization.

By default, APR implements these operations using the most
efficient mechanism available on each target OS/CPU platform.
Many modern CPUs, for example, have an instruction that does
an atomic compare-and-swap (CAS) operation in hardware. On
some platforms, however, APR defaults to a slower, mutex-based
implementation of the atomic API in order to ensure
compatibility with older CPU models that lack such
instructions. If you are building Apache for one of these
platforms, and you plan to run only on newer CPUs, you can
select a faster atomic implementation at build time by
configuring Apache with the --enable-nonportable-
atomics option:

./buildconf

./configure --with-mpm=worker --enable-nonportable-atomics=yes

The --enable-nonportable-atomics option is relevant for the

following platforms:

Solaris on SPARC
By default, APR uses mutex-based atomics on
Solaris/SPARC. If you configure with --enable-
nonportable-atomics, however, APR generates code that
uses a SPARC v8plus opcode for fast hardware compare-
and-swap. If you configure Apache with this option, the
atomic operations will be more efficient (allowing for
lower CPU utilization and higher concurrency), but the
resulting executable will run only on UltraSPARC chips.
Linux on x86
By default, APR uses mutex-based atomics on Linux. If
you configure with --enable-nonportable-atomics,
however, APR generates code that uses a 486 opcode for
fast hardware compare-and-swap. This will result in more
efficient atomic operations, but the resulting
executable will run only on 486 and later chips (and not
on 386).

mod_status and ExtendedStatus On
If you include mod_status and you also set ExtendedStatus
On when building and running Apache, then on every request
Apache will perform two calls
to gettimeofday(2) (or times(2) depending on your operating
system), and (pre-1.3) several extra calls to time(2). This is
all done so that the status report contains timing
indications. For highest performance, set ExtendedStatus
off (which is the default).

accept Serialization – multiple sockets

Warning:
This section has not been fully updated to take into account
changes made in the 2.x version of the Apache HTTP Server.

Some of the information may still be relevant, but please use
it with care.

This discusses a shortcoming in the Unix socket API. Suppose
your web server uses multiple Listen statements to listen on
either multiple ports or multiple addresses. In order to test
each socket to see if a connection is ready Apache
uses select(2). select(2) indicates that a socket
has zero or at least one connection waiting on it. Apache’s
model includes multiple children, and all the idle ones test
for new connections at the same time. A naive implementation
looks something like this (these examples do not match the
code, they’re contrived for pedagogical purposes):

for (;;) {
for (;;) {
fd_set accept_fds;

FD_ZERO (&accept_fds);
for (i = first_socket; i <= last_socket; ++i) { FD_SET (i,
&accept_fds); } rc = select (last_socket+1, &accept_fds, NULL,
NULL, NULL); if (rc < 1) continue; new_connection = -1; for (i
= first_socket; i <= last_socket; ++i) { if (FD_ISSET (i,
&accept_fds)) { new_connection = accept (i, NULL, NULL); if
(new_connection != -1) break; } } if (new_connection != -1)
break; } process the new_connection; }

But this naive implementation has a serious starvation
problem. Recall that multiple children execute this loop at
the same time, and so multiple children will block
at select when they are in between requests. All those blocked
children will awaken and return from select when a single
request appears on any socket (the number of children which
awaken varies depending on the operating system and timing
issues). They will all then fall down into the loop and try
to accept the connection. But only one will succeed (assuming
there’s still only one connection ready), the rest will
be blocked in accept. This effectively locks those children

into serving requests from that one socket and no other
sockets, and they’ll be stuck there until enough new requests
appear on that socket to wake them all up. This starvation
problem was first documented in PR#467. There are at least two
solutions.

One solution is to make the sockets non-blocking. In this case
the accept won’t block the children, and they will be allowed
to continue immediately. But this wastes CPU time. Suppose you
have ten idle children in select, and one connection arrives.
Then nine of those children will wake up, try to accept the
connection, fail, and loop back into select, accomplishing
nothing. Meanwhile none of those children are servicing
requests that occurred on other sockets until they get back up
to the select again. Overall this solution does not seem very
fruitful unless you have as many idle CPUs (in a
multiprocessor box) as you have idle children, not a very
likely situation.

Another solution, the one used by Apache, is to serialize
entry into the inner loop. The loop looks like this
(differences highlighted):

for (;;) {
accept_mutex_on ();
for (;;) {
fd_set accept_fds;

FD_ZERO (&accept_fds);
for (i = first_socket; i <= last_socket; ++i) { FD_SET (i,
&accept_fds); } rc = select (last_socket+1, &accept_fds, NULL,
NULL, NULL); if (rc < 1) continue; new_connection = -1; for (i
= first_socket; i <= last_socket; ++i) { if (FD_ISSET (i,
&accept_fds)) { new_connection = accept (i, NULL, NULL); if
(new_connection != -1) break; } } if (new_connection != -1)
break; } accept_mutex_off ();
process the new_connection;
}

The functions accept_mutex_on and accept_mutex_off implement a
mutual exclusion semaphore. Only one child can have the mutex
at any time. There are several choices for implementing these
mutexes. The choice is defined in src/conf.h (pre-1.3)
or src/include/ap_config.h (1.3 or later). Some architectures
do not have any locking choice made, on these architectures it
is unsafe to use multiple Listen directives.

The directive AcceptMutex can be used to change the selected
mutex implementation at run-time.

AcceptMutex flock
This method uses the flock(2) system call to lock a lock
file (located by the LockFile directive).

AcceptMutex fcntl
This method uses the fcntl(2) system call to lock a lock
file (located by the LockFile directive).

AcceptMutex sysvsem
(1.3 or later) This method uses SysV-style semaphores to
implement the mutex. Unfortunately SysV-style semaphores
have some bad side-effects. One is that it’s possible
Apache will die without cleaning up the semaphore (see
the ipcs(8) man page). The other is that the semaphore API
allows for a denial of service attack by any CGIs running
under the same uid as the webserver (i.e., all CGIs, unless
you use something like suexec orcgiwrapper). For these
reasons this method is not used on any architecture except
IRIX (where the previous two are prohibitively expensive on
most IRIX boxes).

AcceptMutex pthread
(1.3 or later) This method uses POSIX mutexes and should
work on any architecture implementing the full POSIX
threads specification, however appears to only work on
Solaris (2.5 or later), and even then only in certain
configurations. If you experiment with this you should
watch out for your server hanging and not responding.
Static content only servers may work just fine.

AcceptMutex posixsem
(2.0 or later) This method uses POSIX semaphores. The
semaphore ownership is not recovered if a thread in the

process holding the mutex segfaults, resulting in a hang of
the web server.

If your system has another method of serialization which isn’t
in the above list then it may be worthwhile adding code for it
to APR.

Another solution that has been considered but never
implemented is to partially serialize the loop — that is, let
in a certain number of processes. This would only be of
interest on multiprocessor boxes where it’s possible multiple
children could run simultaneously, and the serialization
actually doesn’t take advantage of the full bandwidth. This is
a possible area of future investigation, but priority remains
low because highly parallel web servers are not the norm.

Ideally you should run servers without
multiple Listen statements if you want the highest
performance. But read on.

accept Serialization – single socket
The above is fine and dandy for multiple socket servers, but
what about single socket servers? In theory they shouldn’t
experience any of these same problems because all children can
just block in accept(2) until a connection arrives, and no
starvation results. In practice this hides almost the same
“spinning” behaviour discussed above in the non-blocking
solution. The way that most TCP stacks are implemented, the
kernel actually wakes up all processes blocked in accept when
a single connection arrives. One of those processes gets the
connection and returns to user-space, the rest spin in the
kernel and go back to sleep when they discover there’s no
connection for them. This spinning is hidden from the user-
land code, but it’s there nonetheless. This can result in the
same load-spiking wasteful behaviour that a non-blocking
solution to the multiple sockets case can.

For this reason we have found that many architectures behave
more “nicely” if we serialize even the single socket case. So
this is actually the default in almost all cases. Crude
experiments under Linux (2.0.30 on a dual Pentium pro 166
w/128Mb RAM) have shown that the serialization of the single
socket case causes less than a 3% decrease in requests per
second over unserialized single-socket. But unserialized
single-socket showed an extra 100ms latency on each request.
This latency is probably a wash on long haul lines, and only
an issue on LANs. If you want to override the single socket
serialization you can
define SINGLE_LISTEN_UNSERIALIZED_ACCEPT and then single-
socket servers will not serialize at all.

Lingering Close
As discussed in draft-ietf-http-connection-00.txt section 8,
in order for an HTTP server to reliably implement the protocol
it needs to shutdown each direction of the communication
independently (recall that a TCP connection is bi-directional,
each half is independent of the other). This fact is often
overlooked by other servers, but is correctly implemented in
Apache as of 1.2.

When this feature was added to Apache it caused a flurry of
problems on various versions of Unix because of a
shortsightedness. The TCP specification does not state that
the FIN_WAIT_2 state has a timeout, but it doesn’t prohibit
it. On systems without the timeout, Apache 1.2 induces many
sockets stuck forever in the FIN_WAIT_2 state. In many cases
this can be avoided by simply upgrading to the latest TCP/IP
patches supplied by the vendor. In cases where the vendor has
never released patches (i.e., SunOS4 — although folks with a
source license can patch it themselves) we have decided to
disable this feature.

There are two ways of accomplishing this. One is the socket
option SO_LINGER. But as fate would have it, this has never

been implemented properly in most TCP/IP stacks. Even on those
stacks with a proper implementation (i.e., Linux 2.0.31) this
method proves to be more expensive (cputime) than the next
solution.

For the most part, Apache implements this in a function
called lingering_close (in http_main.c). The function looks
roughly like this:

void lingering_close (int s)
{
char junk_buffer[2048];

/* shutdown the sending side */
shutdown (s, 1);

signal (SIGALRM, lingering_death);
alarm (30);

for (;;) {
select (s for reading, 2 second timeout);
if (error) break;
if (s is ready for reading) {
if (read (s, junk_buffer, sizeof (junk_buffer)) <= 0) { break;
} /* just toss away whatever is here */ } } close (s); }

This naturally adds some expense at the end of a connection,
but it is required for a reliable implementation. As HTTP/1.1
becomes more prevalent, and all connections are persistent,
this expense will be amortized over more requests. If you want
to play with fire and disable this feature you can
defineNO_LINGCLOSE, but this is not recommended at all. In
particular, as HTTP/1.1 pipelined persistent connections come
into use lingering_close is an absolute necessity
(and pipelined connections are faster, so you want to support
them).

Scoreboard File
Apache’s parent and children communicate with each other
through something called the scoreboard. Ideally this should
be implemented in shared memory. For those operating systems
that we either have access to, or have been given detailed
ports for, it typically is implemented using shared memory.
The rest default to using an on-disk file. The on-disk file is
not only slow, but it is unreliable (and less featured).
Peruse the src/main/conf.h file for your architecture and look
for either USE_MMAP_SCOREBOARD or USE_SHMGET_SCOREBOARD.
Defining one of those two (as well as their
companions HAVE_MMAPand HAVE_SHMGET respectively) enables the
supplied shared memory code. If your system has another type
of shared memory, edit the filesrc/main/http_main.c and add
the hooks necessary to use it in Apache. (Send us back a patch
too please.)

Historical note: The Linux port of Apache didn’t start to use
shared memory until version 1.2 of Apache. This oversight
resulted in really poor and unreliable behaviour of earlier
versions of Apache on Linux.

DYNAMIC_MODULE_LIMIT
If you have no intention of using dynamically loaded modules
(you probably don’t if you’re reading this and tuning your
server for every last ounce of performance) then you should
add -DDYNAMIC_MODULE_LIMIT=0 when building your server. This
will save RAM that’s allocated only for supporting dynamically
loaded modules.

Appendix: Detailed Analysis of a

Trace
Here is a system call trace of Apache 2.0.38 with the worker
MPM on Solaris 8. This trace was collected using:

truss -l -p httpd_child_pid.

The -l option tells truss to log the ID of the LWP
(lightweight process–Solaris’s form of kernel-level thread)
that invokes each system call.

Other systems may have different system call tracing utilities
such as strace, ktrace, or par. They all produce similar
output.

In this trace, a client has requested a 10KB static file from
the httpd. Traces of non-static requests or requests with
content negotiation look wildly different (and quite ugly in
some cases).

[crayon-662eda581ccd2472653474/]
In this trace, the listener thread is running within LWP #67.

Note the lack of accept(2) serialization. On this particular
platform, the worker MPM uses an unserialized accept by
default unless it is listening on multiple ports.
[crayon-662eda581ccdd604030038/]
Upon accepting the connection, the listener thread wakes up a
worker thread to do the request processing. In this trace, the
worker thread that handles the request is mapped to LWP #65.

[crayon-662eda581cce0995999765/]
In order to implement virtual hosts, Apache needs to know the
local socket address used to accept the connection. It is
possible to eliminate this call in many situations (such as
when there are no virtual hosts, or when Listen directives are
used which do not have wildcard addresses). But no effort has
yet been made to do these optimizations.

[crayon-662eda581cce2016314044/]

The brk(2) calls allocate memory from the heap. It is rare to
see these in a system call trace, because the httpd uses
custom memory allocators (apr_pool and apr_bucket_alloc) for
most request processing. In this trace, the httpd has just
been started, so it must call malloc(3) to get the blocks of
raw memory with which to create the custom memory allocators.

[crayon-662eda581cce5476698286/]
Next, the worker thread puts the connection to the client
(file descriptor 9) in non-blocking mode.
The setsockopt(2) and getsockopt(2) calls are a side-effect of
how Solaris’s libc handles fcntl(2) on sockets.

[crayon-662eda581cce7481427562/]
The worker thread reads the request from the client.

[crayon-662eda581ccea227416026/]
This httpd has been configured with Options
FollowSymLinks and AllowOverride None. Thus it doesn’t need
to lstat(2) each directory in the path leading up to the
requested file, nor check for .htaccess files. It simply
calls stat(2) to verify that the file: 1) exists, and 2) is a
regular file, not a directory.

[crayon-662eda581ccec728936812/]
In this example, the httpd is able to send the HTTP response
header and the requested file with a
single sendfilev(2) system call. Sendfile semantics vary among
operating systems. On some other systems, it is necessary to
do a write(2) or writev(2) call to send the headers before
callingsendfile(2).

[crayon-662eda581ccef094896168/]
This write(2) call records the request in the access log. Note
that one thing missing from this trace is a time(2) call.
Unlike Apache 1.3, Apache 2.x usesgettimeofday(3) to look up
the time. On some operating systems, like Linux or
Solaris, gettimeofday has an optimized implementation that
doesn’t require as much overhead as a typical system call.

[crayon-662eda581ccf1454633642/]
The worker thread does a lingering close of the connection.

[crayon-662eda581ccf4401784133/]
Finally the worker thread closes the file that it has just
delivered and blocks until the listener assigns it another
connection.

[crayon-662eda581ccf6181197936/]
Meanwhile, the listener thread is able to accept another
connection as soon as it has dispatched this connection to a
worker thread (subject to some flow-control logic in the
worker MPM that throttles the listener if all the available
workers are busy). Though it isn’t apparent from this trace,
the next accept(2)can (and usually does, under high load
conditions) occur in parallel with the worker thread’s
handling of the just-accepted connection.

