
Cross platform C++ compiling
for App development IOS and
Android
Yes, it’s possible to create C++ modules for npm and use them
in an Ionic-based mobile application, but it involves a series
of steps and technologies to bridge between JavaScript (which
Ionic uses) and C++ code.

Here’s an overview of how this can be achieved:

Create a C++ Addon using N-API: You can create a C++1.
addon by utilizing the Node.js N-API which allows you to
write C++ code that can be called from JavaScript. These
addons can then be compiled into binary format and
published to npm.
Use node-gyp: node-gyp is a tool that enables you to2.
compile your C++ code into a Node addon. You will need
to write a binding.gyp file to configure the build
process.
Integrate with Ionic: Once you have your C++ addon ready3.
and published to npm, you can use it in your Ionic
project by installing it like any other npm package.
However, since Ionic is primarily intended for mobile
development and uses a WebView, you will need a bridge
to communicate between the WebView JavaScript context
and the native code (C++ addon). You can use a plugin
like cordova-plugin-native to achieve this.
Platform Specific Configurations: For iOS and Android,4.
you may need to make some platform-specific
configurations to ensure that your C++ code is properly
compiled and linked for the respective platforms.
Testing on Devices: It is essential to test the app on5.
real devices to ensure that the native code is executing
as expected.

https://kutayzorlu.com/software-development/c-c-plus-language-programming/cross-platform-c-compiling-for-app-development-ios-and-android-16874.html
https://kutayzorlu.com/software-development/c-c-plus-language-programming/cross-platform-c-compiling-for-app-development-ios-and-android-16874.html
https://kutayzorlu.com/software-development/c-c-plus-language-programming/cross-platform-c-compiling-for-app-development-ios-and-android-16874.html

Here’s a simplified flow:

Write your C++ code.
Create a Node.js addon using N-API.
Use node-gyp to compile the addon.
Publish the addon to npm.
Create an Ionic project.
Install your addon from npm.
Use a Cordova or Capacitor plugin to bridge between
JavaScript and native code.
Make any necessary platform-specific configurations.
Build your Ionic app for iOS and Android.
Test on real devices.

Please note that this is a high-level overview and each step
can be complex, especially if you are not familiar with C++,
Node.js addons, or Ionic. Be prepared to consult documentation
and seek help from the community if needed.

Yes, you can use the same C++ code for an iOS app, but there
are several steps and considerations involved in integrating
C++ code into an iOS application. Here’s an outline of the
steps:

Writing Portable C++ Code: Ensure that the C++ code you1.
write is portable and does not rely on platform-specific
features. Stick to standard C++ libraries that are
supported across platforms.
Create Objective-C++ Wrapper (Optional): iOS2.
applications are primarily developed using Objective-C
or Swift. If you need to interact with iOS-specific
APIs, you might need to create an Objective-C++ wrapper.
You can rename your files with the .mm extension to
indicate that they are Objective-C++ files, which allows
you to use C++ together with Objective-C.
Add C++ Files to Xcode Project: Add your C++ files to3.

your Xcode project. You can do this by dragging them
into your Xcode project or by adding them through the
File menu.
Configuration in Xcode: You will need to configure your4.
Xcode project to use the correct C++ standard library
(libc++ is common on iOS) and set the C++ language
standard that your code requires (e.g., C++11, C++14).
Linking Libraries: If your C++ code depends on any5.
libraries, you will need to link them in your Xcode
project. This can be done under the “Build Phases” tab
of your target settings.
Write Interface Code: Write the code that interfaces6.
between your iOS application (Objective-C or Swift) and
your C++ code. This usually involves writing functions
that can be called from Objective-C or Swift, which in
turn call your C++ functions.
Testing on iOS Devices: Since iOS simulators do not7.
perfectly emulate the behavior of real devices,
especially when it comes to native code execution, it is
very important to test your application on actual iOS
devices.
Recompilation for iOS: Yes, you will need to recompile8.
your C++ code for the iOS platform. This is typically
handled automatically by Xcode when you build your
project.

Note: If you are using the same C++ code in an Ionic project
as mentioned in your earlier question and also in a native iOS
app, you’ll have two different environments (one is a hybrid
mobile app, and the other is a native iOS app). The
integration steps will vary for each, and you might need
different sets of wrapper/interface code for each environment.

