
How to simple make file
configuration
For Click : >> Download file Here : Make_file_ch01

The mechanics of programming usually follow a fairly simple
routine of editing
source files, compiling the source into an executable form,
and debugging the result.
Although transforming the source into an executable is
considered routine, if done
incorrectly a programmer can waste immense amounts of time
tracking down the
problem. Most developers have experienced the frustration of
modifying a function
and running the new code only to find that their change did
not fix the bug. Later
they discover that they were never executing their modified
function because of some
procedural error such as failing to recompile the source,
relink the executable, or
rebuild a jar. Moreover, as the program’s complexity grows
these mundane tasks can
become increasingly error-prone as different versions of the
program are developed,
perhaps for other platforms or other versions of support
libraries, etc.
The make program is intended to automate the mundane aspects
of transforming
source code into an executable. The advantages of make over
scripts is that you can
specify the relationships between the elements of your program
to make, and it knows
through these relationships and timestamps exactly what steps
need to be redone to

https://kutayzorlu.com/software-development/c-c-plus-language-programming/how-to-simple-make-file-configuration-373.html
https://kutayzorlu.com/software-development/c-c-plus-language-programming/how-to-simple-make-file-configuration-373.html
http://international.us.server12.fileserver.kutayzorlu.com/files/download/2012/08/make_file_ch01.pdf

produce the desired program each time. Using this information,
make can also opti-
mize the build process avoiding unnecessary steps.
GNU make (and other variants of make) do precisely this. make
defines a language for
describing the relationships between source code, intermediate
files, and executa-
bles. It also provides features to manage alternate
configurations, implement reus-
able libraries of specifications, and parameterize processes
with user-defined macros.
In short, make can be considered the center of the development
process by providing
a roadmap of an application’s components and how they fit
together.
The specification that make uses is generally saved in a file
named makefile. Here is a
makefile to build the traditional “Hello, World” program:
hello: hello.c
gcc hello.c -o hello
To build the program execute make by typing:
$ make
3
at the command prompt of your favorite shell. This will cause
the make program to
read the makefile and build the first target it finds there:
$ make
gcc hello.c -o hello
If a target is included as a command-line argument, that
target is updated. If no com-
mand-line targets are given, then the first target in the file
is used, called the default
goal.
Typically the default goal in most makefiles is to build a
program. This usually
involves many steps. Often the source code for the program is
incomplete and the

source must be generated using utilities such as flex or
bison. Next the source is
compiled into binary object files (.o files for C/C++, .class
files for Java, etc.). Then,
for C/C++, the object files are bound together by a linker
(usually invoked through
the compiler, gcc) to form an executable program.
Modifying any of the source files and reinvoking make will
cause some, but usually
not all, of these commands to be repeated so the source code
changes are properly
incorporated into the executable. The specification file, or
makefile, describes the
relationship between the source, intermediate, and executable
program files so that
make can perform the minimum amount of work necessary to
update the executable.
So the principle value of make comes from its ability to
perform the complex series of
commands necessary to build an application and to optimize
these operations when
possible to reduce the time taken by the edit-compile-debug
cycle. Furthermore, make
is flexible enough to be used anywhere one kind of file
depends on another from tra-
ditional programming in C/C++ to Java, TEX, database
management, and more.

