
opencv ubuntu setup, debian
and configuration of library
/* Installing OpenCV 2.3 in Ubuntu.I had a lot of problems
initially to install and port the OpenCV library to Python.
But after reading a lot of blogs I finally found a solution
which I have posted below. */
1)Install all pre requisites
[crayon-662e69ad68cb7203881394/]

2)Install the python development headers
[crayon-662e69ad68cbe748782965-i/]

3)Download the source code:
http://sourceforge.net/projects/opencvlibrary/files/opencv-uni
x/2.3/

4)Go to the directory where OpenCV is downloaded via the
terminal only and then un zip the package:
(note:- It is recommended that you move the downloaded OpenCV
package to the home/ directory
[crayon-662e69ad68cc1916950805/]
5)Now make a new directory called build and go in to it
[crayon-662e69ad68cc3825134768-i/]

6)Run Cmake
[crayon-662e69ad68cc5072429549/]
7)Now make

[crayon-662e69ad68cc7988144711-i/]

8) Make it permanent

[crayon-662e69ad68cc9802746451-i/]

9)Configuring OpenCV for using shared libraries:

https://kutayzorlu.com/software-development/c-c-plus-language-programming/opencv-c/opencv-ubuntu-setup-debian-and-configuration-of-library-367.html
https://kutayzorlu.com/software-development/c-c-plus-language-programming/opencv-c/opencv-ubuntu-setup-debian-and-configuration-of-library-367.html

[crayon-662e69ad68ccb039086423-i/]

Add the following line at the end of the file (it may be an
empty file, that is ok) and then save it:
[crayon-662e69ad68ccd825094941/]
Close the file and run the following command to configure the
library:

[crayon-662e69ad68ccf512732500-i/]

[crayon-662e69ad68cd1829876873-i/]
10)Open your .bashrc file and add the following:
[crayon-662e69ad68cd3618281760/]
[crayon-662e69ad68cd5547985163/]
Save and close the file

11) Reboot the system

http://ubuntuone.com/0qwnXh8VoufDMHGiu5kLIK

Code::Blocks is an GPL based and cross-platform IDE. This is
the tutorials using Code::Blocks with OpenCV.

There are 2 different ways to configure OpenCV (shown below),
but first you should create a new project:

Create a simple console
project.
We can use project wizard to create a simple console project.
Here is the steps

Give this project name of “test_opencv”

Then copy some sample code to main.cpp, such as the contents
of[crayon-662e69ad68cd8058262114-i/]

Configuring Code::Blocks for
OpenCV v2.4
Now you need to configure the compiler to find the OpenCV
header files and libraries. There are 2 different ways you can
configure Code::Blocks for OpenCV v2.4. OpenCV was made of
just 4 libraries originally (until v2.1), but now there are
many more library files, so you are highly recommended to use
the tool “pkg-config” (as mentioned
on CompileOpenCVUsingLinux), but if you are using MinGW on
Windows then you might prefer the manual method.

Automatically with the pkg-config tool (easier with1.
Linux or Mac).
Manually adding the OpenCV library (easier with MinGW on2.
Windows).

Configuring Code::Blocks for OpenCV
using pkg-config
pkg-config is a free command-line tool (available on Windows,
Mac and Linux) that should have been automatically setup
correctly if you built OpenCV with CMake. Open a command-line
and enter pkg-config opencv –cflags or pkg-config opencv
–libs, it will display the compiler and linker arguments to
successfully compile your own OpenCV projects without worrying
about where OpenCV is installed or worrying about which
version you have installed, or how to link to the library in
each Operating System, etc. If you get an error that it does
not know what pkg-config is, then install pkg-config yourself
(Linux or Mac can use the official release, but for Windows
(MinGW) you should use the tool pkg-config-liteinstead).

If you were compiling your project on the command line you
could type:

[crayon-662e69ad68cda918448431/]
(Note: pkg-config is surrounded by back-tick characters, not
quote or apostrophe characters (its usually the same key as
the Tilda key ~, next to the 1 and Esc keys).

To setup Code::Blocks to use pkg-config, first you should
right-click on your project and open the “Build options …”
dialog.

Now you can simply put this into “Linker settings -> Other
linker options”:
[crayon-662e69ad68cdc313168958/]
And put this into “Compiler-> Other options”:
[crayon-662e69ad68cde951934041/]
(Remember to include the back-tick characters, by copy-pasting
those lines directly into Code::Blocks).

The beauty of this method is that it should work for Linux,
Windows and Mac, and for all versions of OpenCV, whereas the
old manual method has different lib filenames for different
Operating Systems and different versions of OpenCV.

Troubleshooting
If you have tried the pkg-config method above but Code::Blocks
does not find OpenCV headers and libs but you have verified
that pkg-config works for OpenCV on a command-line, then
Code::Blocks probably doesn’t know where pkg-config is
installed. So you should place a link into
[crayon-662e69ad68ce0357427393-i/] (Windows) so that it will
be found. For Linux or Mac, you can find the path to pkg-
config if you type this into a terminal:
[crayon-662e69ad68ce3964169154/]
This might print something like “/opt/local/bin/pkg-config”.

So then type this in a terminal:
[crayon-662e69ad68ce4607439201/]
This allows accessing pkg-config from the most common program
folder “/usr/bin/” as well as it’s actual location.

Configuring Code::Blocks for OpenCV
v2.4 manually
In this tutorial I will be using OpenCV v2.4.2 and Code Blocks
v10.05 with GNU compiler (MinGW) on Windows 7. To work on
OpenCV with Code Blocks you just need to add some OpenCV
libraries and the folder with OpenCV header files. Following
are some simple steps that I followed:

1.
 http://sourceforge.net/projects/opencvlibrary/files/opencv-wi
n/,

2. installed OpenCV to “C:\OpenCV”, so adjust the paths if
you installed somewhere else)。In Code::Blocks, goto the menu
“Settings > Compiler and Debugger > Search Directories”. Then
goto “Add” and add the directory “C:\OpenCV\include\opencv”.
This will let your project find the OpenCV header include
files when compiling (before linking):

4. In the Linker tab, add the
directory[crayon-662e69ad68ce7660068395-i/]

5. Now click on “Linker Settings”. Add all the .lib files
from[crayon-662e69ad68ce9769859538-i/] (many files). This will
let you project link to OpenCV libraries:

6. That’s it!! Now you are ready to run your first OpenCV
program. I tested a sample program “kutayzorlu” in the folder
“C:\OpenCV\samples\cpp\kutayzorlu.cpp”.

Alternative method, for OpenCV 2.2
In order to make OpenCV 2.2 (containing C++ code) work under
Windows with Code::Blocks and MinGW, Matthew (mazeus12 on the
mailing list) did the following:

As mentioned in "OpenCV-2.2.0-win-README.txt", "OpenCV-2.2.0-

win32-vs2010.exe" does not contain binaries for MinGW so they
need to be built from the contents in "OpenCV-2.2.0-win.zip".

Steps to build OpenCV 2.2 with Code::Blocks and MinGW:

1. Install Code::Blocks (10.05) with the (MinGW) C++ compiler
option. This should among other install the C++ compiler and
mingw32-make to"C:\Program Files\CodeBlocks\MinGW\bin" (I also
tried to install the latest MinGW using "mingw-
get install gcc g++ mingw32-make" from www.mingw.org but I got
an error in extracting some files…)

2. Add "C:\Program Files\CodeBlocks\MinGW\bin" to system PATH
(at your own judgment: remove any other paths to MinGW
(SomehowDevCpp MinGW paths with probable different versions
messed up the build process))

3. Install Cmake (2.8)

4. Extract "OpenCV-2.2.0-win.zip" to "C:\OpenCV-2.2.0-win" (It
creates a second folder so the final destination looks like
that: "C:\OpenCV-2.2.0-win\OpenCV-2.2.0")

5. Run Cmake (cmake-gui)

6. Set the source code: "C:\OpenCV-2.2.0-win\OpenCV-2.2.0"

7. Set where to build the binaries: e.g. "C:\OpenCV2.2MinGW"

8. Press configure

9. Let Cmake create the new folder

10. Specify the generator: MinGW Makefiles

11. Select “Specify native compilers” and click next

12. For C set: C:/Program Files/CodeBlocks/MinGW/bin/gcc.exe

13. For C++ set: C:/Program Files/CodeBlocks/MinGW/bin/g++.exe

14. Click finish

15. In the configuration screen type in “RELEASE” (or “DEBUG”
if you want to build a debug version) for “CMAKE_BUILD_TYPE”.
Select BUILD_EXAMPLES if you want (I didn’t change anything
else here like “WITH_TBB” or “WITH_QT” etc. I’ll try that when
time comes to use TBB or Qt)

16. Click configure again

17. Click generate

18. Close cmake

19. Go to the command prompt and inside the
folder "C:\OpenCV2.2MinGW" type "mingw32-make" and hit enter
(takes some time)

20. Then type "mingw32-make install" and hit enter again

21. Open Code::Blocks and create a new C++ project
(Configuration similar to the guide: CodeBlocks).

22. In menu: “Project/Build options/Linker settings/Link
libraries”
add "C:\OpenCV2.2MinGW\lib\libopencv_calib3d220.dll.a" and all
the other *.dll.a files in this folder

23. In menu: “Project/Build options/Search
directories/Compiler”
add "C:\OpenCV2.2MinGW\include" (includes in a new program
schould look like this: “#include , #include , #include
etc.”)

24. In menu: “Project/Build options/Search directories/Linker”
add "C:\OpenCV2.2MinGW\lib" The options in steps 22 – 24 can
also be added as global options in menu: Settings/Compiler an
Debugger/Global compiler settings/…, so they will apply to any
project and opened *.cpp file.

25. If necessary, in menu: Settings/Compiler an
Debugger/Global compiler settings/Toolchain executables”

specify"C:\Program Files\CodeBlocks\MinGW" for the compiler’s
installation directory.

26. Open a sample file (or import it into the project),
e.g. "C:\OpenCV2.2MinGW\samples\cpp\dft.cpp" and built it. (If
the *.cpp files do not exist in this folder, you can find them
in the initial folder where you extracted "OpenCV-2.2.0-
win.zip" i.e. "C:\OpenCV-2.2.0-win\OpenCV-2.2.0\samples\cpp")

27. Add "C:\OpenCV2.2MinGW\bin" to the system path

28. Run the program

Configuring Code::Blocks using old
method for OpenCV v1.1
Set the include header file path (OpenCV v1.1):

Set the library path (OpenCV v1.1):

Add the libraries (OpenCV v1.1) directive:

Here is another way you can
add the include path and lib
path in Code::Blocks
First, you need to add a global variable in Codeblocks, see
here: You can open this dialog in:
[crayon-662e69ad68cec052081261/]
Then you can define the [crayon-662e69ad68cef705093841-i/]
path, in my system,

fill the include edit bar with(this is where your opencv
include path locates) : $(#cv)\OpenCV-2.1.0\include\opencv

fill the lib path with(this is where your opencv libraries

locate) : $(#cv)\opencv_build\lib

Later, in your Opencv project, you can change the build
options like below:

Also, you can add the libraries by using these linker options:
[crayon-662e69ad68cf1403434691/]

