
Spring Batch – Timing
Configurations / Improved
Cron Expressions

Usage
You typically create cron triggers with the @Scheduled
annotation, which uses CronExpression internally, as of Spring
Framework 5.3. This means that you can already start using the
New Features if you are on that version.

If you want to play around with CronExpression yourself, you
can create one through the static parse method:
[crayon-6684a683ccd43189283344/]
[crayon-6684a683ccd4b931853623/]

Every 5 Seconds Example
[crayon-6684a683ccd4d685001870/]

Some rules apply:

A field may be an asterisk (*), which always stands for
“first-last”. For the day-of-the-month or day-of-the-
week fields, a question mark (?) may be used instead of
an asterisk.
Commas (,) are used to separate items of a list.
Two numbers separated with a hyphen (-) express a range
of numbers. The specified range is inclusive.
Following a range (or *) with / specifies the interval
of the number’s value through the range.
English names can also be used for the day-of-month and
day-of-week fields. Use the first three letters of the
particular day or month (case does not matter).

https://kutayzorlu.com/software-development/java/java-ee/spring/spring-batch-timing-configurations-improved-cron-expressions-16564.html
https://kutayzorlu.com/software-development/java/java-ee/spring/spring-batch-timing-configurations-improved-cron-expressions-16564.html
https://kutayzorlu.com/software-development/java/java-ee/spring/spring-batch-timing-configurations-improved-cron-expressions-16564.html

Here are some examples:

Cron Expression Meaning

0 0 * * * * top of every hour of every day

*/10 * * * * * every ten seconds

0 0 8-10 * * * 8, 9 and 10 o’clock of every day

0 0 6,19 * * * 6:00 AM and 7:00 PM every day

0 0/30 8-10 * * *
8:00, 8:30, 9:00, 9:30, 10:00 and 10:30

every day

0 0 9-17 * * MON-FRI on the hour nine-to-five weekdays

0 0 0 25 12 ? every Christmas Day at midnight
The next method returns the next occurrence of the trigger or
null if there is none. It takes a java.time.temporal.Temporal
as a parameter, which means it accepts not only LocalDateTime
but also ZonedDateTime if time-zones are relevant.

New Features
Using the java.time APIs let us introduce several new features
that put Spring’s support for cron expressions on an equal
footing with other schedulers. You can start using these
features in @Scheduled as of Spring Framework 5.3.

Macros
Expressions such as 0 0 * * * * are hard for humans to parse
and are, therefore, hard to fix in case of bugs. To improve
readability, Spring now supports the following macros, which
represent commonly used sequences. You can use these macros
instead of the six-digit value, thus: @Scheduled(cron =
"@hourly").

Macro Meaning

@yearly (or @annually) once a year (0 0 0 1 1 *)

Macro Meaning

@monthly once a month (0 0 0 1 * *)

@weekly once a week (0 0 0 * * 0)

@daily (or @midnight) once a day (0 0 0 * * *), or

@hourly once an hour, (0 0 * * * *)

–

Ref :
https://spring.io/blog/2020/11/10/new-in-spring-5-3-improved-c
ron-expressions

Ref : https://www.baeldung.com/spring-batch-start-stop-job

–

