
Permission Scheme for
WordPress , and folder
security of wordpress

Example Permission Modes
Mode Str Perms Explanation

0477 -r–rwxrwx
owner has read only (4), other and group has

rwx (7)

0677 -rw-rwxrwx
owner has rw only(6), other and group has rwx

(7)

0444 -r–r–r– all have read only (4)

0666 -rw-rw-rw- all have rw only (6)

0400 -r——–
owner has read only(4), group and others have

no permission(0)

0600 -rw——-
owner has rw only, group and others have no

permission

0470 -r–rwx—
owner has read only, group has rwx, others

have no permission

0407 -r—–rwx
owner has read only, other has rwx, group has

no permission

0670 -rw-rwx—
owner has rw only, group has rwx, others have

no permission

0607 -rw—-rwx
owner has rw only, group has no permission

and others have rwx

.

Permissions will be different from host to host, so this guide
only details general principles. It cannot cover all cases.
This guide applies to servers running a standard setup (note,

https://kutayzorlu.com/software-development/php/permission-scheme-for-wordpress-and-folder-security-of-wordpress-351.html
https://kutayzorlu.com/software-development/php/permission-scheme-for-wordpress-and-folder-security-of-wordpress-351.html
https://kutayzorlu.com/software-development/php/permission-scheme-for-wordpress-and-folder-security-of-wordpress-351.html

for shared hosting using “suexec” methods, see below).

Typically, all files should be owned by your user (ftp)
account on your web server, and should be writable by that
account. On shared hosts, files should never be owned by the
webserver process itself (sometimes this is www, or apache,
or nobody user).

Any file that needs write access from WordPress should be
owned or group-owned by the user account used by the WordPress
(which may be different than the server account). For example,
you may have a user account that lets you FTP files back and
forth to your server, but your server itself may run using a
separate user, in a separate usergroup, such
as dhapache or nobody. If WordPress is running as the FTP
account, that account needs to have write access, i.e., be the
owner of the files, or belong to a group that has write
access. In the latter case, that would mean permissions are
set more permissively than default (for example, 775 rather
than 755 for folders, and 664 instead of 644).

The file and folder permissions of WordPress should be the
same for most users, depending on the type of installation you
performed and the umask settings of your system environment at
the time of install.

Typically, all core WordPress files should be writable only by
your user account (or the httpd account, if different).
(Sometimes though, multiple ftp accounts are used to manage an
install, and if all ftp users are known and trusted, i.e., not
a shared host, then assigning group writable may be
appropriate. Ask your server admin for more info.) However, if
you utilize mod_rewrite Permalinks or other .htaccess features
you should make sure that WordPress can also write to
your /.htaccess file.

If you want to use the built-in theme editor, all files need
to be group writable. Try using it before modifying file

permissions, it should work. (This may be true if different
users uploaded the WordPress package and the Plugin or Theme.
This wouldn’t be a problem for Plugin and Themes installed via
the admin. When uploading files with different ftp users group
writable is needed. On shared hosting, make sure the group is
exclusive to users you trust… the apache user shouldn’t be in
the group and shouldn’t own files.)

Some plugins require the /wp-content/ folder be made
writeable, but in such cases they will let you know during
installation. In some cases, this may require assigning 755
permissions. The same is true for /wp-content/cache/ and
maybe /wp-content/uploads/(if you’re using MultiSite you may
also need to do this for /wp-content/blogs.dir/)

Additional directories under /wp-content/ should be documented
by whatever plugin / theme requires them. Permissions will
vary.

Shared Hosting with su exec
The above may not apply to shared hosting systems that use the
“suexec” approach for running PHP binaries. This is a popular
approach used by many web hosts. For these systems, the php
process runs as the owner of the php files themselves,
allowing for a simpler configuration and a more secure
environment for the specific case of shared hosting.

Note: suexec methods should NEVER be used on a single-site
server configuration, they are more secure only for the
specific case of shared hosting.

In such an suexec configuration, the correct permissions
scheme is simple to understand.

All files should be owned by the actual user’s account,
not the user account used for the httpd process.
Group ownership is irrelevant, unless there’s specific

group requirements for the web-server process
permissions checking. This is not usually the case.
All directories should be 755 or 750.
All files should be 644 or 640. Exception: wp-config.php
should be 600 to prevent other users on the server from
reading it.
No directories should ever be given 777, even upload
directories. Since the php process is running as the
owner of the files, it gets the owners permissions and
can write to even a 755 directory.

In this specific type setup, WordPress will detect that it can
directly create files with the proper ownership, and so it
will not ask for FTP credentials when upgrading or installing
plugins.

Using an FTP Client
FTP programs (“clients”) allow you to set permissions for
files and directories on your remote host. This function is
often called chmodor set permissions in the program menu.

In a WordPress install, two files that you will probably want
to alter are the index page, and the css which controls the
layout. Here’s how you change index.php – the process is the
same for any file.

In the screenshot below, look at the last column – that shows
the permissions. It looks a bit confusing, but for now just
note the sequence of letters.

Initial permissions

Right-click ‘index.php’ and select ‘File Permissions’
A popup screen will appear.

Altering file permissions

Don’t worry about the check boxes. Just delete the ‘Numeric
value:’ and enter the number you need – in this case it’s 666.
Then click OK.

Permissions have been altered

You can now see that the file permissions have been changed.

Unhide the hidden files
By default, most FTP Clients, including FileZilla, keep hidden
files, those files beginning with a period (.), from being
displayed. But, at some point, you may need to see your hidden
files so that you can change the permissions on that file. For
example, you may need to make your .htaccess file, the file
that controls permalinks, writeable.

To display hidden files in FileZilla, in it is necessary to
select ‘View’ from the top menu, then select ‘Show hidden
files’. The screen display of files will refresh and any
previously hidden file should come into view.

To get FileZilla to always show hidden files – under Edit,
Settings, Remote File List, check the Always show hidden files
box.

In the latest version of Filezilla, the ‘Show hidden files’
option was moved to the ‘Server’ tab. Select ‘Force show
hidden files.’

Using the Command Line
If you have shell/SSH access to your hosting account, you can
use chmod to change file permissions, which is the preferred
method for experienced users. Before you start using chmod it
would be recommended to read some tutorials to make sure you
understand what you can achieve with it. Setting incorrect
permissions can take your site offline, so please take your
time.

Unix Permissions
Apple Chmod Reference

You can make all the files in your wp-content directory
writable in two steps, but before making every single file and
folder writable you should first try safer alternatives like
modifying just the directory. Try each of these commands first
and if they dont work then go recursive, which will make even
your themes image files writable. Replace DIR with the folder
you want to write in
[crayon-66ee1bdabe86e920394737/]
If those fail to allow you to write, try them all again in
order, except this time replace -v with -R, which will
recursively change each file located in the folder. If after
that you still cant write, you may now try 777.

About Chmod
chmod is a unix command that means “change mode” on a file.
The -R flag means to apply the change to every file and
directory inside of wp-content. 766 is the mode we are
changing the directory to, it means that the directory is
readable and writable by WordPress and any and all other users
on your system. Finally, we have the name of the directory we
are going to modify, wp-content. If 766 doesn’t work, you can
try 777, which makes all files and folders readable, writable,

and executable by all users, groups, and processes.

If you use Permalinks you should also change permissions
of .htaccess to make sure that WordPress can update it when
you change settings such as adding a new page, redirect,
category, etc.. which requires updating the .htaccess file
when mod_rewrite Permalinks are being used.

Go to the main directory of WordPress1.
Enter chmod -v 666 .htaccess2.

NOTE: From a security standpoint, even a small amount of
protection is preferable to a world-writeable directory. Start
with low permissive settings like 744, working your way up
until it works. Only use 777 if necessary, and hopefully only
for a temporary amount of time.

The dangers of 777
The crux of this permission issue is how your server is
configured. The username you use to FTP or SSH into your
server is most likely not the username used by the server
application itself to serve pages.
[crayon-66ee1bdabe878008834390/]
Often the Apache server is ‘owned’ by
the dhapache or nobody user accounts. These accounts have a
limited amount of access to files on the server, for a very
good reason. By setting your personal files and folders owned
by your user account to be World-Writable, you are literally
making them World Writable. Now the dhapache and nobody users
that run your server, serving pages, executing php
interpreters, etc.. will have full access to your user account
files.

This provides an avenue for someone to gain access to your
files by hijacking basically any process on your server, this
also includes any other users on your machine. So you should
think carefully about modifying permissions on your machine.

I’ve never come across anything that needed more than 767, so
when you see 777 ask why its necessary.

The Worst Outcome
The worst that can happen as a result of using 777 permissions
on a folder or even a file, is that if a malicious cracker or
entity is able to upload a devious file or modify a current
file to execute code, they will have complete control over
your blog, including having your database information and
password.

Find a Workaround
Its usually pretty easy to have the enhanced features provided
by the impressive WordPress plugins available, without having
to put yourself at risk. Contact the Plugin author or your
server support and request a workaround.

Finding Secure File Permissions
The .htaccess file is one of the files that is accessed by the
owner of the process running the server. So if you set the
permissions too low, then your server won’t be able to access
the file and will cause an error. Therein lies the method to
find the most secure settings. Start too restrictive and
increase the permissions until it works.

Example Permission Settings
The following example has a custom compiled php-cgi binary and

a custom php.ini file located in the cgi-bin directory for
executing php scripts. To prevent the interpreter and php.ini
file from being accessed directly in a web browser they are
protected with a .htaccess file.

Default Permissions (umask 022)
[crayon-66ee1bdabe87c219894593/]
Secured Permissions
[crayon-66ee1bdabe87f486381930/]

.htaccess permissions
644 > 604 – The bit allowing the group owner of the .htaccess
file read permission was removed. 644 is normally required and
recommended for .htaccess files.

php.ini permissions
644 > 600 – Previously all groups and all users with access to
the server could access the php.ini, even by just requesting
it from the site. The tricky thing is that because the php.ini
file is only used by the php.cgi, we only needed to make sure
the php.cgi process had access. The php.cgi runs as the same
user that owns both files, so that single user is now the only
user able to access this file.

php.cgi permissions
755 > 711 This file is a compiled php-cgi binary used instead
of mod_php or the default vanilla php provided by the hosting
company. The default permissions for this file are 755.

php5.cgi permissions
755 > 100 – Because of the setup where the user account is the

owner of the process running the php cgi, no other user or
group needs access, so we disable all access except execution
access. This is interesting because it really works. You can
try reading the file, writing to the file, etc.. but the only
access you have to this file is to run php scripts. And as the
owner of the file you can always change the permission modes
back again.

[crayon-66ee1bdabe882717458011/]

