
INKBOARD – TABLET PC ENABLED
DESIGN-ORIENTED LEARNING
Download word file here : education_tablet_pc_Cate2004Paper

INKBOARD – TABLET PC ENABLED

DESIGN-ORIENTED LEARNING

Hai Ning (ninghai@mit.edu)

John R. Williams (jrw@mit.edu)

Alexander H. Slocum (slocum@mit.edu)

Abel Sanchez (doval@mit.edu)

Intelligence Engineering Systems Lab (MIT 1-250)

Civil and Environmental Engineering Department

Massachusetts Institute of Technology

77 Massachusetts Avenue,

Cambridge,MA02138,U.S.A.

ABSTRACT
This research presents a software tool – InkBoard – that is
built on the Tablet PC platform and supports interactive
design sessions in the context of design-oriented education.
It provides designers, within a small team, a rich set of
communication tools including network-shared ink strokes and
audio/video conferencing capabilities. It is our belief that
this tool will greatly enhance the design-oriented education
experience of the students and teachers alike.

https://kutayzorlu.com/web/new-s/university-education/inkboard-tablet-pc-enabled-design-oriented-learning-299.html
https://kutayzorlu.com/web/new-s/university-education/inkboard-tablet-pc-enabled-design-oriented-learning-299.html
http://international.us.server12.fileserver.kutayzorlu.com/files/download/2012/09/education_tablet_pc_Cate2004Paper.doc

Keywords: E-education, design, design-oriented learning,
Tablet PC, sketch.

1 Introduction
The advance of computer technology has radically changed the
higher-education landscape since the late 1990s. Educational
institutes are aggressively exploring the opportunities of
leveraging the power of the Internet to facilitate learning.

However, in the design-oriented education field, including
architectural design, urban planning, and particularly
mechanical engineering design, existing software packages
hardly fulfill the need of supporting interactive design
sessions with rich user interface and convenient communication
tools.

One of the most powerful and yet often overlooked designer’s
tools is freehand sketching. Despite the fact that CAD
workstations have generally replaced drawing board in design
studios, freehand sketch remains to be the indispensable
visual thinking tool. It not only serves as communication
medium for getting ideas across fellow designers, it also
plays important roles in the self-critic conversation
designers constantly have with themselves.

With the introduction of Tablet PC, we are able to create a
software tool that communicates design ideas over the network
in the most natural fashion – freehand sketching. With
InkBoard, designers can send and receive ink strokes
instantly, store the collaborative drawing in a central
database, or as a local file. Every single stroke can be
identified by creator, and has timestamp attached so that a
sequential replay of the drawing can be performed to give
designer a clear idea of the thought generation process. We
will discuss many of this functionalities and the architecture
of this tool in the following sections. But before getting

into technical details, some aspects of design theory are
discussed.

2 Design-oriented
learning

2.1 What Is Design
Design was always related to certain professions such as
architects, engineers, industrial designers and others. And
design activity was naturally regarded as what these
professions did in order to produce the drawings needed by
their clients and by manufactures. However, after the global
industrialization, attempts have been made by professional
designers to redefine design activity and isolate the essence
of designing as a standard method, or recipe, that can be
applied to all situations. Numerous literatures dating as
early as nineteen fifties and sixties try to labelthe
seemingly obvious and yet elusive definition of design
activity.

One thing that is common to most of these definitions is that
most of them emphasize not the outcome of the design, but the
ingredients of design. If we look at design from an end-to-end
stand point, the whole chain events – beginning with the
initial motivation, and moving through the actions of
designers, manufactures, distributors and consumers – leads to
the ultimate result of something new, something different from
what we have already. In that sense, Jones argues that the
“definition of designing is the initiation of change in man-
made things”[1]. This definition expands the design activity
from traditional design professions such as engineers and
architects, to other professions including economic planners,
legislators, managers, publicists, applied researchers,
politicians etc.

file:///D:/Desktop/Cate2004Paper.doc#_edn1

However, the objective of this research is to explore the
better approaches for design education practiced in university
environment, focusing on fields such as mechanical engineering
and architectural design. Therefore, for the sake of this
research work, we limit the definition of design to the
traditional sense of producing recorded ideas, 2-D drawings or
3-D models that are representations of physical products that
serve pre-defined purposes.

2.2 Design Disciplines
The common design disciplines taught in school can include the
following areas and combinations thereof:

Architectural design. This includes interior design, urban
planning, structural and civil engineering, commercial and
residential construction, business services, etc.

Electronic design. This includes microprocessor computer
hardware, software engineering, consumer electronics,
telecommunications, robotics, etc.

Industrial design. This includes mechanical engineering,
manufacturing, fashion design, consumer design, biotechnology,
etc.

Graphic design. This includes communications technology,
environmental signage, broadcasting arts, animation,
advertising, marketing, etc.

2.3 The design-oriented
learning approach
Since design is a mix of understanding of explicit design
parameters and conducting conscious and yet implicit creative
activity, design-oriented learning takes a unique approach of
a combination of objectivism/behaviorism and constructivism,

with the emphasis on the following aspects.

2.3.1 Creative problem solving
The definition of design by Alexander is to “create something
out of nothing and make it useful.”[2] Theoretical
developments in cognitive science has provided us tools to
analyze the information handling procedures that can be
identified within the designer’s operations[3]. These tools,
despite different angles of view, all point out the
characteristic of design is the creative problem-solving
process under the conditions of bounded rationality[4].

Of course, here “problem” refers to a much wider definition of
the literal meaning of the word itself, and they can be well-
defined[5], ill-defined[6], or they can be wicked[7].

Commonly practiced procedures for problem solving usually
include the sequential steps to reach the final design. Since
“solving the problem creatively” is such an abstract concept,
it is natural for design instructors to resort to a somewhat
concrete and linear process that can be more tangible and
easier for students to grasp. Constant feed-back loop check
during each step ahead ensures the design decisions are made
towards the right direction. Classroom experience tells us
that the “creation” step usually is the hardest one for
students, simply because that is the step where “something
comes out of nothing” as pointed out by Alexander.

2.3.2 Team collaboration
With the advancement of the social and technological
environment, the design tasks become invariably more and more
complicated and require teams of designers to accomplish.
Achieving effective collaboration in a design team is never an
easy task. The design education students acquired should
release them from the tyranny of imposed ideas and enable each
to contribute to, and to act upon, the best that he/she is

file:///D:/Desktop/Cate2004Paper.doc#_edn2
file:///D:/Desktop/Cate2004Paper.doc#_edn3
file:///D:/Desktop/Cate2004Paper.doc#_edn4
file:///D:/Desktop/Cate2004Paper.doc#_edn5
file:///D:/Desktop/Cate2004Paper.doc#_edn6
file:///D:/Desktop/Cate2004Paper.doc#_edn7

capable of imagining and doing. This is not an easy task, and
it can only be achieved by creating a collaborative
environment where students can freely express themselves
individually and yet the individual efforts can still be
unified towards the common goal.

2.3.3 Project management
A complimentary and yet invaluable lesson students should take
away with from design-oriented courses is project management
skills. Because of the hands-on feature of design courses,
design project is often the central if not sole task designed
by instructors and handed out to students. With a given
deadline, sometimes limited physical resources, students,
usually divided into design teams, are expected to turn in a
physical design product, or 2D or 3D representation of in the
product in the end. The whole project management would likely
include but not limited to identifying key players in
respective fields, allocating resources, setting up realistic
short-time milestones and long-time goals, dividing task into
independent modules, designing clean interface between
modules, establishing clear boundary of responsibilities,
analyzing risks and returns, and on top of all, managing to
deliver project on time. These are essential skills that
determine the ultimate success or failure of the design
project. Incorporating these elements in a project-drive
design course can help students build a sense of how design
project is handled in the real world.

3 Sketch and Design

3.1 The relations of
drawing to problem solving
Understanding the importance of drawing during all the

developmental stages of the design process helps to produce
better software for supporting design. Here, based on a study
in OregonStateUniversitywhere mechanical engineering students
were videotaped during a design process, we summarize that
drawings help design in the following aspects[8].

To archive the geometric form of the design
To communicate ideas
To act as an analysis tool
To simulate the design
To serve as a completeness checker
To act as an extension of designer’s short-term memory

3.2 Role of Sketching
The capability of making “back-of-the-envelope” or “cock-tail
napkin” sketches to aid in solving a given design problem is
greatly emphasized in architectural education. In mechanical
engineering field where, perhaps to the outcome of the design,
form is not as important as function, engineers are still
expected to be able to capture and express ideas going through
his/her mind with impromptu sketches. This type of quick
sketches allow for clearer thinking, stabilizing generated
ideas during the conceptual stage of design, and facilitating
spatial and geometric reasoning.

Freehand sketch stands out among other types of drawing
activity as a much more than a means of communicating design
information. Its function includes but not limited to the
presentation of spatial information and relationships.
Furthermore, it often acts as the link that bridges the gap
between the cognitive process of design and the physical world
in which the designed artifact eventually will exist. It is
the first stage to realize and assess the design ideas.

file:///D:/Desktop/Cate2004Paper.doc#_edn8

3.3 Cognitive analysis
Sketching plays the most important role in visual
communication because of its low barrier of effort and high
expressiveness with trained hands. Study shows that a stunning
67% of all drawings done over the course of a typical design
project are freehand sketches. Designers are constantly having
a conversation with themselves through the cycle of sketching,
inspecting, and revising.

Following is a widely recognized model[9] in which an initial
designer generating ideas is called an ORIGINATOR. The
designer’s mind searches mentally through a broad (DOMAIN)
knowledge base and through more specific base related to the
problem (CONTEXT). The mental representation is transformed
into a physical representation. Depending on the quality and
preference on the language skill of the designer the idea is
transformed into some graphical solution (sketches) or textual
solution (sentences).

Figure 1. System model for generation and interpretation of
ideas

A “talk-back” process generates new mental images when the
designer sees his or her idea physically represented and
realizes changes to the original idea. The “talk-back” process
is repeated until the ORIGINATOR is satisfied with the
resulting design solution.

Subsequently, the design solution is then passed on to another
designer (RECEIVER). The transformation reverses its course
where the physical representation “talk-backs” to the RECEIVER
and, depending upon language skill and quality, and DOMAIN and
CONTEXT knowledge, the RECEIVER creates a mental
representation. The transformation cycle continues until the
designer is content with his/her interpretation or

file:///D:/Desktop/Cate2004Paper.doc#_edn9

understanding of the original design.

3.4 Back to the Drawing
Board
Today most of the architecture construction documents or
mechanical design documents are drawn with CAD software.
Unfortunately however, this revolution also brings less
favorable impact on some other aspects of the design.

3.4.1 Lost of Public Forum
In the past, the large drawing board served as forums for
fellow designers to share their ideas and communicate the
design. It was a perfect setup for informal face-to-face
meetings where designers gather spontaneously to examine and
discuss design problems. Now, not only computer screens are
perceived as private workspace and hence not appropriate to be
studied by others for a prolonged period of time. The existing
CAD packages have not been able to help designer to reclaim
this lost public space that was proven, and still should have
been, very helpful in a collaborative design environment.

3.4.2 Lack of abstraction,
ambiguity, vagueness and imprecision
It is interesting that in the early conceptual, creative
phases of designing, designers almost always consciously
reject using computer tools. Rather, they prefer making rough
sketches with pencil and paper in good old fashion. One of the
main reasons for this seemingly peculiar behavior is because
of the ambiguity, vagueness and imprecision that is
tremendously helpful in early conceptual design, easily
obtainable with freehand sketch, and yet unavailable in
today’s popular CAD systems. Current design software, which
restricts visual representations to precisely drawn geometric

elements, stifles the graphical conversation that designer has
with herself. CAD drawings eliminates the suggestive power of
the sketch.

3.4.3 No incremental
information storage
From plotted CAD drawing one can hardly follow the incremental
progression of the design, since it is more than often a
“cleaned up” version of the initial sketch. The ease of
erasing, duplicating, modifying geometric shapes in CAD
software often subconsciously encourage designer to constantly
remove, refine, or replace shapes drawn during the formation
process of design. The final product may be a very clear and
clean representation of the design, but the thought process
that could have been revealed by the comments, lines or shapes
drawn along the way is lost forever.

4 The promise of
Tablet PC
It is our hope that the emergence of new technology such as
Tablet PC could mitigate, if not entirely eliminate, the
aforementioned problems with traditional computers running CAD
software packages, since most of these problems are caused by
the awkwardness of the reining hardware interface, namely,
mouse and keyboard. Keyboard is the natural input device for
textual information processing. With the invention of windows-
like graphical user interface and mouse, the archaic text
command lines, now only cherished by die-hard geeks, are
replaced by simply point and click. However, it is sufficient
to say that freehand drawing was never a task made easy by
these input devices. Tablet PC, with its natural user
interface, is trying to change all this.

4.1 Pen-based natural
user interface
Perhaps the most striking difference one feels when first time
using a Tablet PC is the smoothness of the flowing ink
appearing on the screen. Being able to use the stylus writing
directly on the surface of the laptop computer screen and
seeing the digital ink appearing from the tip of the stylus is
a very satisfactory experience indeed. It removes the
frustrating barrier of old input devices where users are
forced to move their hands holding a digitizer on top of a pad
on the side while trying to focus their eyes on the screen to
see the outcome. The pressure-sensitive digitizer screen also
adds the natural smooth feeling of real strokes of ink with
varying width. Thus, designers will be able use Tablet PC just
as if they are using pen and paper to make conceptual
sketches. Combined with the ease of storing and retrieving
digital sketch, perhaps even with shape recognition, at
certain stage when the designer is confident enough about the
idea, the sketch made can even be imported to CAD software for
further detailed formal drawings.

4.2 Advanced operating
system
Microsoft Windows XP Tablet PC Edition is a superset of
Windows XP Professional so it provides the power of Windows XP
with no sacrifices. Tablet PC Edition has the full
capabilities of Windows XP Professional, plus additional
features for tablet pen–based computing. And, because it uses
the Windows operating system, Tablet PC will run Windows
XP–compatible applications.

5 InkBoard Software
Design

5.1 Goals
The goal of this research effort is to create an Ink-enabled
sketch pad application that connects multiple design team
members simultaneously through network (preferably wireless
network) and allows they to communicate their sketches in real
time. With this overall objective in mind, there are three
important goals to achieve.

5.1.1 Design-oriented education
needs
The InkBoard should address the common needs of design-
oriented education.

5.1.2 Scalability
The InkBoard software needs to be highly scalable.

5.1.3 Application usability
InkBoard needs to be Tablet-friendly. Because pen and mouse
operate differently from one another, it is a big challenge to
offer new UI experience that better fits pen-paper type of
interaction but at the same time establishes subconscious
connections with traditional windows GUI design so that users
would not feel totally disoriented

5.2 Challenge: Ink-

enabled communication
The emphasis of InkBoard as we discussed before lies in the
collaboration functions. At the very bottom of multiple client
communication is the Ink networking support, which happens to
be the one feature missing from the Tablet PC SDK. Other than
providing a proprietary serialization method that turns ink
stroke object into undecipherable byte arrays, much is left
for the developers to figure out how to transfer ink object
through TCP/IP network in real time between Tablets. And this
is the main technical challenge of InkBoard.

5.3 System architecture
Client/server structure is adopted for InkBoard because of its
ease to collect transferred data and the predicable and
controllable network traffic pattern.

Figure 2. Client/server architecture of InkBoard

In the client/server architecture illustrated above, multiple
Tablet PC clients running InkBoard client application connect
to the central InkBoard server via TCP/IP network. They send
every stroke the users make, or any other type of actions,
over the InkBoard server in the form of InkBoard Message.
InkBoard Server collects the messages sent from every client,
figures out the meaning of the messages, stores them in the
InkBoard Database Server and follows the recipient list of
each message and sends them out again to the respective
clients. The clients receive these messages, restore them back
to strokes and take the appropriate action to display them.
All these steps happen in the real time.

5.4 InkBoard Client

Features
InkBoard Client is an Ink-enabled Windows application that has
very rich user interfaces and features. Inside the client
Windows form class, there are 3 main components – InkBoard
drawing area, other UI elements and the network manager.

Figure 3. InkBoard main user interface

5.4.1 InkBoard drawing area
The main drawing area is realized using a class called
InkBoardDrawingArea. It includes a Windows panel that attaches
itself to an InkOverlay object to collect user Ink strokes,
horizontal as well as vertical Scrollbars for moving the
panning and zooming, an image ArrayList object to hold images
uploaded by local user or transmitted over the network from
other users and a range of other elements that deals with the
collecting and drawing of Ink as well as images.

5.4.2 Sign-in dialog box
InkBoard requires user to identify herself at the start of the
program. Normally this is done with a text box presented to
the user at the time of connecting. With the advance
handwriting recognition algorithm, it is natural to create a
sign-in dialog box that automatically converts user’s
handwriting into username.

Figure 4. Sign-in dialog box

5.4.2.1 InkBoard toolbar
On the top of the main drawing area, ten different buttons
lined up as the most common tasks performed by an InkBoard
user. All of these functions can be activated with a touch of
the stylus on the respective buttons so that users never have
to resort to keyboards. It is also worth noting that the drop
down menu appears on the left side of the root menu as it

shows in the above screen capture. This is to accommodate
right-handed users so that their hand will not block their
eye-sight when operating the stylus. Of course this setting
can be changed for left-handed users as well.

Figure 5. InkBoard toolbars

5.4.3 Timeline
Another interesting UI feature is the time line. Since we have
recorded every message sent by every client to construct a
particular drawing, we have the capability to describe each
stroke made by each user using a time line whose length is
proportional to the time intervals between the strokes. A VCR
like interface is provided to the user so they can move the
time marker along the time line. Any stroke made after the
time marker becomes the “future strokes”, and thus grayed out.
User gets a clear picture of how the drawing came into being
by dragging the time marker and observing the drawing
appearing. This greatly helps them to understand the design
process, enhance the design experience immensely.

Figure 6. InkBoard timeline

5.4.4 Presence and ink layers
InkBoard adopted an UI element that imitates the popular
instant messenger buddy list. When a user starts the client
application, he will see an icon representing himself in the
list box. After he joins a collaborative sketch session,
everyone who is working, or has worked on the same drawing
appears too as icons. A tiny flashing red pen alongside the
icon means this person is right now making strokes. This last
state has been particular useful since it indicates the
actions being taken from the other end of the network. This
gives the user a very satisfying sense that someone is working
simultaneously with her, and it encourages responsive actions
from her own end too.

Figure 7. InkBoard layer and buddy list

The drawing area of InkBoard stores ink stroke objects in
layers according to their owner. By clicking on the checkbox
in front of the user name, user can turn on or off the layer
of – and thus all the strokes made by – a particular user.
This is very helpful for identifying individual contributions
of the drawing.

6 InkBoard Message
Protocol
The technical challenge in developing InkBoard application
mainly lies in dealing with networking capability of ink
strokes. A basic message structure and a messaging protocol
have to be put in place.

6.1 The anatomy of IMP
In order to handle various different type of ink related
messages, the sensible thing to do is to implement a base
class structure that captures the fundamental elements of
similarities among these messages, and then build specific
type of messages using class inheritance from the object-
oriented programming concept. The advantage of doing this is
that we would only need to implement one set of network
mechanism to be able to handle the base class message type,
instead of having to write different networking code for each
of these different message types. Since all other message
types inherit from the base message class, the networking code
would be able to handle all of them.

6.2 Transferring

InkBoardMessage
After the InkBoardMessage type object is serialized into byte
array in the form of MemoryStream object, the next step is to
send it over the network to the server or client through
TCP/IP socket.

6.2.1 Asynchronous client
socket
After a network connection is established through TCP/IP
socket, a NetworkStream object is created attached to the
connected Socket object. By default, the NetworkStream class
sends and receives data over Stream socket in blocking mode,
which means the application suspends while waiting for network
operation to complete. This is not acceptable for InkBoard
client application. To maintain the responsiveness to the user
interface, we need to use an asynchronous client socket to
send and receive data in non-blocking mode. This way, the
application will process the network operation on one thread
while the application itself continues to run on its own
original thread. NetworkStream object provides BeingWrite()
and BeginRead() functions for asynchronous reading and
writing. By using these methods, we are able to spin off new
threads when network operation is executed. And consequently,
a callback function is required to notify the original
application thread that the network sending and receiving
activities are finished and the data writing is finished, or
received data is ready to be further processed.

6.2.2 Preserve message boundary
Unlike UDP, TCP/IP is a connection-oriented protocol in that
Windows OS TCP subsystem uses buffers to aggregate packets
before sending them out, and thus does not preserve data
message boundaries. In other words, the remote device won’t
necessarily receive the data the same number of message units.

Figure 8. InkBoard messaging protocol

InkBoard message protocol implements a message marker to solve
this problem. Each message is prefixed with a serialized
Integer that indicates the length of the InkBoardMessage
object. The BinaryFormatter object for serializing object
always serializes a four-byte Integer into a 56-element long
byte array. Thus, from the receiving end, we can always chop
off the first 56 bytes or received binary array, and de-
serialize it into an Integer L, which tells us the length of
the immediately following InkBoardMessage object. Then we will
continue to receive the binary data and store them in a buffer
array, and keep a incremental counter until the counter
reaches the number L, at which point we know for sure that
this is the last byte of the serialized current message
object.

7 Integrating
Conference xp

7.1 Conference XP &
InkBoard
Microsoft Research’s Learning Sciences and Technology Group10
started Conference XP as an initiative of the Learning
Experience Project, aiming to bring high-quality audio/video
conferencing and messaging capability to multicast-enabled
broad-band network. InkBoard, being a graphical communication
tool through networked sketches, integrates Conference XP
technology to provide A/V conference functions on top of the
ink sharing interactions among designers. When peers can see
each other’s facial expression, hear each other’s voice while
studying each other’s freehand sketch on a Tablet PC, this
increases the effectiveness of the collaboration immensely.

However, we also have to bear in mind that by using Conference
XP technology, we limit the A/V conference functions to users
that are on multicast-enabled networks because of the RTP
mechanism it adopts. Generally it will not work across
different LAN, although the ink sharing part will still
continue to function because of the InkBoard Messaging
Protocol adopts the unicast approach.

7.2 Integration with
InkBoard
To make Conference XP components an isolated module so that it
can be easily plugged in to any program that needs A/V
conference support, we wrapped the video components and audio
components together with their user interface into two Windows
ActiveX control objects. The lower-level RTP APIs were
retained with minimal changes made to the Managed DirectShow
Layer. Using the Microsoft Visual Studio.NET integrated
development environment (IDE), these two Windows ActiveX
controls can be readily dragged from the control library, and
dropped on to a standard Windows form object. The integration
code is then automatically generated by the IDE and all the
necessary API calls are exposed as public methods of the
objects, making it very easy to wire them with the user
interface event handling mechanisms of the host application,
in this case, InkBoard.

The video conference control that can contain up to four small
video windows is placed directly under the participant list
box, making it easier for the local user to recognize remote
users’ faces and sketch strokes. Each video window has its
user name shown as well to make easy connections. The audio
control is placed below the video control. There is no limit
to the number of users that can talk simultaneously as far as
the UI is concerned. It is only restricted by the network
bandwidth and the Tablet PC’s hardware configuration. A slider

bar is provided for adjusting the audio volume using the
digital pen.

Figure 9. InkBoard Audio/Video Conferencing

When user connects to the InkBoard Server, they can choose to
have A/C conference enabled by selecting two checkboxes. The
InkBoard client will spin off two new threads at that moment.
One goes out to make the socket connection with InkBoard
Server; the other starts the services to subscribe to a
multicast IP, send out and receive the A/V packets.

8 Conclusion
InkBoard, as the Tablet PC software tool built for addressing
the synchronous interactive needs between design team members,
tries to fulfill the requirements of the design-oriented
pedagogy. It is the very first sketch-sharing application
built on the Tablet PC, leveraging the powerful Microsoft
Tablet PC Platform SDK.

InkBoard is recognized to be a very useful tool in teaching
design courses, and was also showcased in Microsoft Faculty
Summit 2003, along with other major research effort of
Learning Experience Project conducted by Microsoft
Research,UniversityofWashingtonandBrownUniversity. InkBoard is
also featured as one of the “Partner Downloads” from the
Conference XP project website.

InkBoard software is freely available from the Internet
(http://iesl.mit.edu), along with part of the source code in
the hope of promoting collaboration and to making improvements
with the collaborative effort from the academic community. So
far, we have got very positive responses, with openly
expressed interest for collaboration from various parties such
as the Computer Science Department of Rice University, the
Computer Science Department of University ofIndiana, and

universities fromNorway.

9 References

[1] Jones, J. Christopher. (1980). Design Methods.New York:
John Wiley & Sons.

[2] Alexander, Christopher. (1963). “The Determination of
Components for an Indian Village”. In Conference on Design
Methods.New York: The MacMillan Company.

[3] Hayes, J. R. (1978). Cognitive Psychology: Thinking and
Creating. Homewood,IL: Dorsey.

[4] Rowe, Peter G. (1995). The Design Thinking.Cambridge,MA:
MIT Press.

[5] Newell, Alan, and Herbert A. Simon. (1972). Human Problem
Solving.Englewood Cliffs, NJ: Prentice-Hall.

[6] Bazjanac, Vladimir. (1974). “Architectural Design Theory:
Models of the Design Process.” In William R. Spillers, ed.,
Basic Questions of Design Theory, pp. 8-16.New York: North-
Holland.

[7] Churchman, C. West. (1967). “Wicked Problems”, Management
Science, 4, no. 14, pp. B-141, and B-142.

[8] Ullman, David G, et al. (1990). “The Importance of Drawing
in the Mechanical Design Process”, Computer & Graphics, Vol.
14, No. 2. pp. 263-274.Pergamon Press,Great Britain.

[9] Shah, J., Vargas-Hernandez, N., Kulkarni, S., and Summers,
J. (2001). “Collaborative Sketching (S-Sketch) – An Idea
Generation Technique for Engineering Design”, Accepted to

file:///D:/Desktop/Cate2004Paper.doc#_ednref1
file:///D:/Desktop/Cate2004Paper.doc#_ednref2
file:///D:/Desktop/Cate2004Paper.doc#_ednref3
file:///D:/Desktop/Cate2004Paper.doc#_ednref4
file:///D:/Desktop/Cate2004Paper.doc#_ednref5
file:///D:/Desktop/Cate2004Paper.doc#_ednref6
file:///D:/Desktop/Cate2004Paper.doc#_ednref7
file:///D:/Desktop/Cate2004Paper.doc#_ednref8
file:///D:/Desktop/Cate2004Paper.doc#_ednref9

appear in Joural of Creative Behavior.

10 Anderson, R., Beavers, J., VanDeGrif, T., Videon, F.
(2001). “Videoconferencing and Presentation Support for

Synchronous Distance Education”, 33rd ASEE/IEEE Frontiers in
Education Conference, Boulder, CO,Nov 5-8, 2003

Acknowledgements

The team was funded by grants from Microsoft I-Campus Program,
Kajima Corporation and the Center for Innovation in Product
Development at Massachusetts Institute of Technology.

