
Java	Coding	Guidelines	

Version	1.3.2	
	
All	code	must	follow	best	practices.		Part	(but	not	all)	of	this	is	adhering	to	the	following	guidelines:	

Development	
For	code	development,	I	recommend	the	following	these	steps	strictly	in	this	order.		Make	sure	to	complete	each	step	
fully	before	continuing	with	the	next	step.	
	
1. Design	your	approach	on	paper,	including	class	structure/relationships.	
2. Implement	the	skeleton	of	your	class	structure/relationships,	including	all	methods,	major	attributes,	etc.		Your	

methods	should	already	have	JavaDoc,	your	attributes	should	already	have	comments,	etc.		Do	not	add	any	
implementation	to	the	methods.		Your	code	should	compile.	(e.g.,	if	a	method	returns	an	object,	simply	return	null	to	
make	the	code	compile).	

3. Fully	implement	testing	based	on	the	specification.		For	each	element	of	the	specification	(e.g.,	throws	exception	if	
name	is	null),	write	a	test.		Your	test	should	be	complete	and	compilable/executable.		Of	course,	they	will	mostly	fail	
because	your	classes	have	no	implementation.	

4. Inside	the	various	unimplemented	methods,	add	comments	for	the	implementation	you	plan	to	do.	
5. Fill	in	the	implementation	between	your	comments.	
6. Run	tests	and	fix	broken	code.	 	

Commenting	
1. Add	the	following	to	the	beginning	of	all	of	your	source	files:	

/**
 *
 * Author: <Your name>
 * Assignment: <Assignment name>
 * Class: <CSI class name>
 *
 **/	
To	be	clear,	this	is	not	the	JavaDoc	for	the	class	

2. Add	JavaDoc	to	all	of	your	code,	including	classes,	methods,	etc.		Before	submission	make	sure	that	you	can	run	the	
JavaDoc	export	without	any	errors	or	warnings.	
/**
 * Adds two ints (a+b) and returns the result
 *
 * @param a first integer to add
 * @param b second integer to add
 *
 * @returns the sum of a+b
 * @throws OverflowException
 * if a+b exceeds the value representable by int
 */
public int add(final int a, final int b) {
Note	that	JavaDoc	follows	a	specific	form:	
-	There	are	no	dashes	(-)	between	parameter	and	definition	
-	Use	@	to	define	values	like	@author,	@param,	etc.	
-	Do	not	add	extraneous	information	to	method	JavaDoc	like	method	name.

3. Individually	and	meaningfully	comment	member	variables	and	class	constants.	
4. Obvious/obfuscated	comments	are	useless.		Do	not	use	them.	
5. Properly	(but	reasonably)	comment	your	code.		A	developer	should	be	able	to	get	a	general	idea	of	what’s	going	on	

by	just	reading	comments	(and	no	code).	
6. Each	element	needs	a	definition.		This	includes	@param	

@throws SpecialException // Bad!
@throws SpecialException if val is null or fails validation // Good!

7. Check	your	comments	for	spelling	and	grammatical	errors.

Coding	
1. You	may	only	use	the	standard	Java	library	and	JUnit	unless	otherwise	notified.		Do	not	include	any	additional	JARs	in	

your	build	path	(and	do	not	allow	your	IDE	to	automatically	do	so).	
2. Follow	the	Java	Coding	Conventions	from	inventors	of	Java	(see	class	page	for	document).	
3. Do	not	use	tabs.	
4. Always	use	braces	for	code	blocks,	even	for	a	single	line	of	code.		For	example,	

if (x == 5) {
 System.out.println(“True!”);
}
The	same	rule	applies	for	while,	for,	etc.	

5. Import	only	necessary	classes.		Do	not	use	wildcard	imports	(e.g.,	java.util.*)	unless	there	are	4	or	more	classes	from	
that	package.	

6. Add	any	and	all	annotation	hints	to	your	code	(e.g.,	@Override).	
7. Eliminate	code	replication.	
8. Eliminate	code	replication.	
9. Seriously,	eliminate	code	replication.	
10. Properly	address	all	compiler	warnings.		Do	not	suppress	compiler	warnings	unless	well	justified.		Include	your	

justification	in	a	comment.	
11. No	spurious	object	creation.	

String firstName = “”;
String lastName = new String(“”);
// Assignments above wasted assignment/allocation since just replacing values
firstName = in.nextLine();
lastName = in.nextLine();	

12. For	simple	boolean	methods,	return	directly	from	expression	instead	of	using	if.	
	
boolean empty() { // Yuck
 if (length == 0) {
 return true;
 }else {
 return false;
 }
}

boolean empty() { // Yep
 return (length == 0);
}
This	avoids	potential	errors	such	as	getting	true/false	returns	backwards.	

13. Do	not	use	C-style	array	declarations.	
	
int x[]; // No!!!
int[] x; // Yep	 	

14. Do	not	call	toString()	if	it	is	implicitly	called.	
	
System.out.println(blah.toString()); // NO!!!!
System.out.println(blah); // Yep	
	

15. Do	not	use	deprecated	methods.	
16. Use	“Mom”.equals(s)	instead	of	s.equals(“Mom”)	to	handle	the	case	of	s == null.	
17. Avoid	resource	leaks.		Examples	include	
a. Failure	to	close	files	
b. Memory	leaks	
18. Always	specify	access	(or	comment	why	package	is	appropriate).		Use	correct	access.	
19. No	inappropriate	member	variables.		Member	variables	are	for	state	related	to	object,	not	for	variables	used	by	

several	methods.	
20. Don't	include	extraneous,	non-executed,	or	always-executed	code.		Examples	include	
a. Constructors	that	would	be	autogenerated	
b. String blah = thing;

return blah;
c. if (done == true)	–	use	if (done)	
d. Assignments,	comparisons,	etc.	with	no	side-effect	
e. Dead	code	
f. Unnecessary	type	operations,	elses,	etc.	
g. Unused	variables	
21. Use	foreach	variant	of	for-loop	if	applicable.	
22. Use	collection	interface	references	instead	of	concrete	type	references.		Also,	make	sure	to	use	the	diamond	operator.	

	
ArrayList l = new ArrayList(); // NO!
List<String> l = new ArrayList<>(); // Yep!	
	

23. Don’t	use	the	older	collection	classes	such	as	Vector	and	Hashtable.		Instead	use	ArrayList	and	HashMap.		The	main	
difference	is	that	the	new	collection	classes	are	not	synchronized	so	their	performance	should	be	better.		Vector	and	
ArrayList	differ	slightly	in	their	expansion	algorithms.		Unlike	Hashtable,	HashMap	permits	null	values	and	a	null	key.		
If	you	need	synchronization,	use	the	Collections	class	synchronization	wrapper.	
	
List<String> l = Collections.synchronizedList<String>(new ArrayList<String>());	
	
Note	that	Java	concurrent	package	contains	ConcurrentHashMap	and	CopyOnWriteArrayList	for	better	performing	
synchronized	maps	and	lists.	

24. Catch	the	most	specific	exception	type.	
25. Move	all	literal	constants	to	variable	constants	except	in	really	obvious	situations.	

if (size > 255) // Wrong
if (size > MAXSIZE) // Great!	

26. Do	not	import	or	specify	default	packages	(e.g.,	use	String	not	java.lang.String).	
27. Do	not	explicitly	extend	Object.	
28. Do	not	violate	encapsulation.	
29. Code	should	only	print	to	console	when	appropriate.		Inside	a	library	is	not	an	appropriate	place	to	print	to	the	

console.		Use	logger	if	need	to	output	in	such	cases.		If	you	are	printing	to	the	console,	print	to	the	correct	stream	
(stdout	vs.	stderr).	

30. Make	error	messages	as	useful	as	possible.		(“Parameters	bad”	vs	“Usage:		go	<file>	<date>”).	
31. Declare	variables	with	use	in	the	minimum	scope.		Do	not	predeclare	at	the	function	start.		Predeclaration	leads	to	

overextended	scope	(entire	function)	and	repeated	initialization.	
32. Run	code	and	runtime	analysis	tools	to	identify	errors.	
33. Make	sure	all	numeric	constant	values	in	your	code	are	justified?		int[52 	probably	cannot.		Why	not	51?		53?	
34. Do	not	use	global	variables	unless	absolute	necessary.		Make	sure	the	explanation	for	needing	global	variables	is	

clearly	commented.		Global	constants	are	fine.	

35. Prefer	
	
this.attribute = Objects.requireNonNull(attribute, "attribute cannot be null");	
	
to	
	
if (attribute == null) {
 throw new NullPointerException("attribute cannot be null")
}
this.attribute = attribute;	
	
It	is	less	code,	morereadable,	and	offers	fewer	opportunities	to	make	mistakes.	

36. Avoid	the	if-requires-an-else	pattern.		I’m	not	saying	you	should	never	use	else;	just	only	use	it	when	appropriate.		
Consider	the	following	code:	
	
if (validation test fails) {
 throw Exception
}
Real Stuff	
	
This	has	fewer	nesting	levels	than	requiring	Real	Stuff	to	be	inside	an	else,	reducing	complexity	and	increasing	
readability.	

37. A	switch	statement	should	always	have	a	default.		The	only	exception	is	if	you	can	somehow	prove	that	you’ve	
covered	all	possible	cases.	

38. Insure	the	flow	of	the	code	is	easily	understandable.	
39. Insure	variable	and	method	names	meaningful.	
40. Insure	that	you	would	want	to	be	given	this	code	for	maintenance	and	modification.	 	

JUnit	
1. Provide	useful	test	names	(e.g.,	testTruncatedDecode()	is	a	better	name	than	testThing()).	
2. Each	test	should	be	independent	of	other	tests.		You	may	not	assume	any	test	execution	order.	
3. Use	specific	asserts	(assertTrue	vs.	assertEquals)	

assertTrue(5 == x); results in
java.lang.AssertionError:

assertEquals(5, x); results in
java.lang.AssertionError: expected:<5> but was:<6>	
	
In	this	case,	assertEquals()	provides	more	useful	information.		JUnit	provides	a	wide	range	of	asserts	(e.g.,	
assertArrayEquals,	assertNull,	assertSame,	etc.).	

4. Keep	your	tests	small	by	limiting	the	number	of	failures	a	test	reports.		A	test	failure	should	indicate	one	particular	
problem.		Consider	refactoring	long	tests.	

5. Properly	test	exceptions	according	to	your	JUnit	framework	best	practices.	
6. Don't	just	test	the	happy	path.		Include	boundary	conditions,	etc.	
7. JUnit	tests	should	print	nothing!	
8. Test	the	coverage	of	your	code	by	your	tests.		This	is	not	a	definitive	measure	for	a	good	test;	however,	it	can	

certainly	show	you	bad	(incomplete)	testing.	

