
Redis replication
How Redis supports high availability and failover with replication

At the base of Redis replication (excluding the high availability features provided as an additional layer by
Redis Cluster or Redis Sentinel) there is a leader follower (master-replica) replication that is simple to use
and con�igure. It allows replica Redis instances to be exact copies of master instances. The replica will
automatically reconnect to the master every time the link breaks, and will attempt to be an exact copy of it
regardless of what happens to the master.

This system works using three main mechanisms:

�. When a master and a replica instances are well-connected, the master keeps the replica updated by sending a stream of

commands to the replica to replicate the effects on the dataset happening in the master side due to: client writes, keys

expired or evicted, any other action changing the master dataset.

�. When the link between the master and the replica breaks, for network issues or because a timeout is sensed in the master

or the replica, the replica reconnects and attempts to proceed with a partial resynchronization: it means that it will try to

just obtain the part of the stream of commands it missed during the disconnection.

�. When a partial resynchronization is not possible, the replica will ask for a full resynchronization. This will involve a more

complex process in which the master needs to create a snapshot of all its data, send it to the replica, and then continue

sending the stream of commands as the dataset changes.

Redis uses by default asynchronous replication, which being low latency and high performance, is the
natural replication mode for the vast majority of Redis use cases. However, Redis replicas asynchronously
acknowledge the amount of data they received periodically with the master. So the master does not wait
every time for a command to be processed by the replicas, however it knows, if needed, what replica already
processed what command. This allows having optional synchronous replication.

Synchronous replication of certain data can be requested by the clients using the WAIT command. However

WAIT is only able to ensure there are the speci�ied number of acknowledged copies in the other Redis

instances, it does not turn a set of Redis instances into a CP system with strong consistency: acknowledged
writes can still be lost during a failover, depending on the exact con�iguration of the Redis persistence.
However with WAIT the probability of losing a write after a failure event is greatly reduced to certain hard to

trigger failure modes.

You can check the Redis Sentinel or Redis Cluster documentation for more information about high
availability and failover. The rest of this document mainly describes the basic characteristics of Redis basic
replication.

Important facts about Redis replication

• Redis uses asynchronous replication, with asynchronous replica-to-master acknowledges of the amount of data

processed.

• A master can have multiple replicas.

• Replicas are able to accept connections from other replicas. Aside from connecting a number of replicas to the

same master, replicas can also be connected to other replicas in a cascading-like structure. Since Redis 4.0, all the

sub-replicas will receive exactly the same replication stream from the master.

• Redis replication is non-blocking on the master side. This means that the master will continue to handle queries

when one or more replicas perform the initial synchronization or a partial resynchronization.

• Replication is also largely non-blocking on the replica side. While the replica is performing the initial synchronization,

it can handle queries using the old version of the dataset, assuming you con�igured Redis to do so in redis.conf.

Otherwise, you can con�igure Redis replicas to return an error to clients if the replication stream is down. However,

after the initial sync, the old dataset must be deleted and the new one must be loaded. The replica will block

incoming connections during this brief window (that can be as long as many seconds for very large datasets). Since

Redis 4.0 you can con�igure Redis so that the deletion of the old data set happens in a different thread, however

loading the new initial dataset will still happen in the main thread and block the replica.

• Replication can be used both for scalability, to have multiple replicas for read-only queries (for example, slow O(N)

Firefox https://redis.io/docs/manual/replication/

1 von 7 02.07.2022, 15:02

https://redis.io/commands/wait
https://redis.io/commands/wait
https://redis.io/commands/wait
https://redis.io/commands/wait
https://redis.io/commands/wait
https://redis.io/commands/wait
https://redis.io/commands/wait
https://redis.io/commands/wait
https://redis.io/commands/wait
https://redis.io/docs/manual/replication/#important-facts-about-redis-replication
https://redis.io/docs/manual/replication/#important-facts-about-redis-replication
https://redis.io/docs/manual/replication/#important-facts-about-redis-replication

operations can be o�loaded to replicas), or simply for improving data safety and high availability.

• You can use replication to avoid the cost of having the master writing the full dataset to disk: a typical technique

involves con�iguring your master redis.conf to avoid persisting to disk at all, then connect a replica con�igured to

save from time to time, or with AOF enabled. However, this setup must be handled with care, since a restarting

master will start with an empty dataset: if the replica tries to sync with it, the replica will be emptied as well.

Safety of replication when master has
persistence turned off
In setups where Redis replication is used, it is strongly advised to have persistence turned on in the master
and in the replicas. When this is not possible, for example because of latency concerns due to very slow
disks, instances should be con�igured to avoid restarting automatically after a reboot.

To better understand why masters with persistence turned off con�igured to auto restart are dangerous,
check the following failure mode where data is wiped from the master and all its replicas:

�. We have a setup with node A acting as master, with persistence turned down, and nodes B and C replicating from node A.

�. Node A crashes, however it has some auto-restart system, that restarts the process. However since persistence is turned

off, the node restarts with an empty data set.

�. Nodes B and C will replicate from node A, which is empty, so they'll effectively destroy their copy of the data.

When Redis Sentinel is used for high availability, also turning off persistence on the master, together with
auto restart of the process, is dangerous. For example the master can restart fast enough for Sentinel to not
detect a failure, so that the failure mode described above happens.

Every time data safety is important, and replication is used with master con�igured without persistence, auto
restart of instances should be disabled.

How Redis replication works
Every Redis master has a replication ID: it is a large pseudo random string that marks a given story of the
dataset. Each master also takes an offset that increments for every byte of replication stream that it is
produced to be sent to replicas, to update the state of the replicas with the new changes modifying the
dataset. The replication offset is incremented even if no replica is actually connected, so basically every
given pair of:

Replication ID, offset

Identi�ies an exact version of the dataset of a master.

When replicas connect to masters, they use the PSYNC command to send their old master replication ID and

the offsets they processed so far. This way the master can send just the incremental part needed. However if
there is not enough backlog in the master buffers, or if the replica is referring to an history (replication ID)
which is no longer known, than a full resynchronization happens: in this case the replica will get a full copy of
the dataset, from scratch.

This is how a full synchronization works in more details:

The master starts a background saving process to produce an RDB �ile. At the same time it starts to buffer all
new write commands received from the clients. When the background saving is complete, the master
transfers the database �ile to the replica, which saves it on disk, and then loads it into memory. The master
will then send all buffered commands to the replica. This is done as a stream of commands and is in the
same format of the Redis protocol itself.

You can try it yourself via telnet. Connect to the Redis port while the server is doing some work and issue the
SYNC command. You'll see a bulk transfer and then every command received by the master will be re-issued

Firefox https://redis.io/docs/manual/replication/

2 von 7 02.07.2022, 15:02

https://redis.io/docs/manual/replication/#safety-of-replication-when-master-has-persistence-turned-off
https://redis.io/docs/manual/replication/#safety-of-replication-when-master-has-persistence-turned-off
https://redis.io/docs/manual/replication/#safety-of-replication-when-master-has-persistence-turned-off
https://redis.io/docs/manual/replication/#how-redis-replication-works
https://redis.io/docs/manual/replication/#how-redis-replication-works
https://redis.io/docs/manual/replication/#how-redis-replication-works
https://redis.io/commands/psync
https://redis.io/commands/psync
https://redis.io/commands/psync
https://redis.io/commands/sync
https://redis.io/commands/sync
https://redis.io/commands/sync

in the telnet session. Actually SYNC is an old protocol no longer used by newer Redis instances, but is still

there for backward compatibility: it does not allow partial resynchronizations, so now PSYNC is used instead.

As already said, replicas are able to automatically reconnect when the master-replica link goes down for
some reason. If the master receives multiple concurrent replica synchronization requests, it performs a
single background save in to serve all of them.

Replication ID explained
In the previous section we said that if two instances have the same replication ID and replication offset, they
have exactly the same data. However it is useful to understand what exactly is the replication ID, and why
instances have actually two replication IDs the main ID and the secondary ID.

A replication ID basically marks a given history of the data set. Every time an instance restarts from scratch
as a master, or a replica is promoted to master, a new replication ID is generated for this instance. The
replicas connected to a master will inherit its replication ID after the handshake. So two instances with the
same ID are related by the fact that they hold the same data, but potentially at a different time. It is the offset
that works as a logical time to understand, for a given history (replication ID) who holds the most updated
data set.

For instance, if two instances A and B have the same replication ID, but one with offset 1000 and one with
offset 1023, it means that the �irst lacks certain commands applied to the data set. It also means that A, by
applying just a few commands, may reach exactly the same state of B.

The reason why Redis instances have two replication IDs is because of replicas that are promoted to masters.
After a failover, the promoted replica requires to still remember what was its past replication ID, because
such replication ID was the one of the former master. In this way, when other replicas will sync with the new
master, they will try to perform a partial resynchronization using the old master replication ID. This will work
as expected, because when the replica is promoted to master it sets its secondary ID to its main ID,
remembering what was the offset when this ID switch happened. Later it will select a new random replication
ID, because a new history begins. When handling the new replicas connecting, the master will match their
IDs and offsets both with the current ID and the secondary ID (up to a given offset, for safety). In short this
means that after a failover, replicas connecting to the newly promoted master don't have to perform a full
sync.

In case you wonder why a replica promoted to master needs to change its replication ID after a failover: it is
possible that the old master is still working as a master because of some network partition: retaining the
same replication ID would violate the fact that the same ID and same offset of any two random instances
mean they have the same data set.

Diskless replication
Normally a full resynchronization requires creating an RDB �ile on disk, then reloading the same RDB from
disk to feed the replicas with the data.

With slow disks this can be a very stressing operation for the master. Redis version 2.8.18 is the �irst version
to have support for diskless replication. In this setup the child process directly sends the RDB over the wire
to replicas, without using the disk as intermediate storage.

Con�iguration
To con�igure basic Redis replication is trivial: just add the following line to the replica con�iguration �ile:

replicaof 192.168.1.1 6379

Firefox https://redis.io/docs/manual/replication/

3 von 7 02.07.2022, 15:02

https://redis.io/commands/sync
https://redis.io/commands/sync
https://redis.io/commands/sync
https://redis.io/commands/psync
https://redis.io/commands/psync
https://redis.io/commands/psync
https://redis.io/docs/manual/replication/#replication-id-explained
https://redis.io/docs/manual/replication/#replication-id-explained
https://redis.io/docs/manual/replication/#replication-id-explained
https://redis.io/docs/manual/replication/#diskless-replication
https://redis.io/docs/manual/replication/#diskless-replication
https://redis.io/docs/manual/replication/#diskless-replication
https://redis.io/docs/manual/replication/#configuration
https://redis.io/docs/manual/replication/#configuration
https://redis.io/docs/manual/replication/#configuration

Of course you need to replace 192.168.1.1 6379 with your master IP address (or hostname) and port.
Alternatively, you can call the REPLICAOF command and the master host will start a sync with the replica.

There are also a few parameters for tuning the replication backlog taken in memory by the master to perform
the partial resynchronization. See the example redis.conf shipped with the Redis distribution for more

information.

Diskless replication can be enabled using the repl-diskless-sync con�iguration parameter. The delay to

start the transfer to wait for more replicas to arrive after the �irst one is controlled by the repl-diskless-

sync-delay parameter. Please refer to the example redis.conf �ile in the Redis distribution for more details.

Read-only replica
Since Redis 2.6, replicas support a read-only mode that is enabled by default. This behavior is controlled by
the replica-read-only option in the redis.conf �ile, and can be enabled and disabled at runtime using

CONFIG SET .

Read-only replicas will reject all write commands, so that it is not possible to write to a replica because of a
mistake. This does not mean that the feature is intended to expose a replica instance to the internet or more
generally to a network where untrusted clients exist, because administrative commands like DEBUG or

CONFIG are still enabled. The Security page describes how to secure a Redis instance.

You may wonder why it is possible to revert the read-only setting and have replica instances that can be
targeted by write operations. The answer is that writable replicas exist only for historical reasons. Using
writable replicas can result in inconsistency between the master and the replica, so it is not recommended
to use writable replicas. To understand in which situations this can be a problem, we need to understand
how replication works. Changes on the master is replicated by propagating regular Redis commands to the
replica. When a key expires on the master, this is propagated as a DEL command. If a key which exists on the
master but is deleted, expired or has a different type on the replica compared to the master will react
differently to commands like DEL, INCR or RPOP propagated from the master than intended. The propagated
command may fail on the replica or result in a different outcome. To minimize the risks (if you insist on using
writable replicas) we suggest you follow these recommendations:

• Don't write to keys in a writable replica that are also used on the master. (This can be hard to guarantee
if you don't have control over all the clients that write to the master.)

• Don't con�igure an instance as a writable replica as an intermediary step when upgrading a set of
instances in a running system. In general, don't con�igure an instance as a writable replica if it can ever
be promoted to a master if you want to guarantee data consistency.

Historically, there were some use cases that were consider legitimate for writable replicas. As of version 7.0,
these use cases are now all obsolete and the same can be achieved by other means. For example:

• Computing slow Set or Sorted set operations and storing the result in temporary local keys using
commands like SUNIONSTORE and ZINTERSTORE. Instead, use commands that return the result without
storing it, such as SUNION and ZINTER.

• Using the SORT command (which is not considered a read-only command because of the optional
STORE option and therefore cannot be used on a read-only replica). Instead, use SORT_RO, which is a
read-only command.

• Using EVAL and EVALSHA are also not considered read-only commands, because the Lua script may call
write commands. Instead, use EVAL_RO and EVALSHA_RO where the Lua script can only call read-only
commands.

While writes to a replica will be discarded if the replica and the master resync or if the replica is restarted,
there is no guarantee that they will sync automatically.

Before version 4.0, writable replicas were incapable of expiring keys with a time to live set. This means that if

Firefox https://redis.io/docs/manual/replication/

4 von 7 02.07.2022, 15:02

https://redis.io/commands/replicaof
https://redis.io/commands/replicaof
https://redis.io/commands/replicaof
https://redis.io/docs/manual/replication/#read-only-replica
https://redis.io/docs/manual/replication/#read-only-replica
https://redis.io/docs/manual/replication/#read-only-replica
https://redis.io/commands/config-set
https://redis.io/commands/config-set
https://redis.io/commands/config-set
https://redis.io/commands/debug
https://redis.io/commands/debug
https://redis.io/commands/debug
https://redis.io/commands/config
https://redis.io/commands/config
https://redis.io/commands/config
https://redis.io/topics/security
https://redis.io/topics/security
https://redis.io/commands/sunionstore
https://redis.io/commands/sunionstore
https://redis.io/commands/zinterstore
https://redis.io/commands/zinterstore
https://redis.io/commands/sunion
https://redis.io/commands/sunion
https://redis.io/commands/zinter
https://redis.io/commands/zinter
https://redis.io/commands/sort
https://redis.io/commands/sort
https://redis.io/commands/sort_ro
https://redis.io/commands/sort_ro
https://redis.io/commands/eval
https://redis.io/commands/eval
https://redis.io/commands/evalsha
https://redis.io/commands/evalsha
https://redis.io/commands/eval_ro
https://redis.io/commands/eval_ro
https://redis.io/commands/evalsha_ro
https://redis.io/commands/evalsha_ro

you use EXPIRE or other commands that set a maximum TTL for a key, the key will leak, and while you may

no longer see it while accessing it with read commands, you will see it in the count of keys and it will still use
memory. Redis 4.0 RC3 and greater versions are able to evict keys with TTL as masters do, with the
exceptions of keys written in DB numbers greater than 63 (but by default Redis instances only have 16
databases). Note though that even in versions greater than 4.0, using EXPIRE on a key that could ever exists

on the master can cause inconsistency between the replica and the master.

Also note that since Redis 4.0 replica writes are only local, and are not propagated to sub-replicas attached
to the instance. Sub-replicas instead will always receive the replication stream identical to the one sent by
the top-level master to the intermediate replicas. So for example in the following setup:

A ---> B ---> C

Even if B is writable, C will not see B writes and will instead have identical dataset as the master instance

A .

Setting a replica to authenticate to a master
If your master has a password via requirepass , it's trivial to con�igure the replica to use that password in all

sync operations.

To do it on a running instance, use redis-cli and type:

config set masterauth <password>

To set it permanently, add this to your con�ig �ile:

masterauth <password>

Allow writes only with N attached replicas
Starting with Redis 2.8, you can con�igure a Redis master to accept write queries only if at least N replicas
are currently connected to the master.

However, because Redis uses asynchronous replication it is not possible to ensure the replica actually
received a given write, so there is always a window for data loss.

This is how the feature works:

• Redis replicas ping the master every second, acknowledging the amount of replication stream processed.

• Redis masters will remember the last time it received a ping from every replica.

• The user can con�igure a minimum number of replicas that have a lag not greater than a maximum number of

seconds.

If there are at least N replicas, with a lag less than M seconds, then the write will be accepted.

You may think of it as a best effort data safety mechanism, where consistency is not ensured for a given
write, but at least the time window for data loss is restricted to a given number of seconds. In general bound
data loss is better than unbound one.

If the conditions are not met, the master will instead reply with an error and the write will not be accepted.

There are two con�iguration parameters for this feature:

• min-replicas-to-write <number of replicas>

• min-replicas-max-lag <number of seconds>

Firefox https://redis.io/docs/manual/replication/

5 von 7 02.07.2022, 15:02

https://redis.io/commands/expire
https://redis.io/commands/expire
https://redis.io/commands/expire
https://redis.io/commands/expire
https://redis.io/commands/expire
https://redis.io/commands/expire
https://redis.io/docs/manual/replication/#setting-a-replica-to-authenticate-to-a-master
https://redis.io/docs/manual/replication/#setting-a-replica-to-authenticate-to-a-master
https://redis.io/docs/manual/replication/#setting-a-replica-to-authenticate-to-a-master
https://redis.io/docs/manual/replication/#allow-writes-only-with-n-attached-replicas
https://redis.io/docs/manual/replication/#allow-writes-only-with-n-attached-replicas
https://redis.io/docs/manual/replication/#allow-writes-only-with-n-attached-replicas

For more information, please check the example redis.conf �ile shipped with the Redis source distribution.

How Redis replication deals with expires on
keys
Redis expires allow keys to have a limited time to live (TTL). Such a feature depends on the ability of an
instance to count the time, however Redis replicas correctly replicate keys with expires, even when such keys
are altered using Lua scripts.

To implement such a feature Redis cannot rely on the ability of the master and replica to have syncd clocks,
since this is a problem that cannot be solved and would result in race conditions and diverging data sets, so
Redis uses three main techniques to make the replication of expired keys able to work:

�. Replicas don't expire keys, instead they wait for masters to expire the keys. When a master expires a key (or evict it

because of LRU), it synthesizes a DEL command which is transmitted to all the replicas.

�. However because of master-driven expire, sometimes replicas may still have in memory keys that are already logically

expired, since the master was not able to provide the DEL command in time. In to deal with that the replica uses its logical

clock to report that a key does not exist only for read operations that don't violate the consistency of the data set (as new

commands from the master will arrive). In this way replicas avoid reporting logically expired keys are still existing. In

practical terms, an HTML fragments cache that uses replicas to scale will avoid returning items that are already older than

the desired time to live.

�. During Lua scripts executions no key expiries are performed. As a Lua script runs, conceptually the time in the master is

frozen, so that a given key will either exist or not for all the time the script runs. This prevents keys expiring in the middle of

a script, and is needed to send the same script to the replica in a way that is guaranteed to have the same effects in the

data set.

Once a replica is promoted to a master it will start to expire keys independently, and will not require any help
from its old master.

Con�iguring replication in Docker and NAT
When Docker, or other types of containers using port forwarding, or Network Address Translation is used,
Redis replication needs some extra care, especially when using Redis Sentinel or other systems where the
master INFO or ROLE commands output is scanned to discover replicas' addresses.

The problem is that the ROLE command, and the replication section of the INFO output, when issued into a

master instance, will show replicas as having the IP address they use to connect to the master, which, in
environments using NAT may be different compared to the logical address of the replica instance (the one
that clients should use to connect to replicas).

Similarly the replicas will be listed with the listening port con�igured into redis.conf , that may be different

from the forwarded port in case the port is remapped.

To �ix both issues, it is possible, since Redis 3.2.2, to force a replica to announce an arbitrary pair of IP and
port to the master. The two con�igurations directives to use are:

replica-announce-ip 5.5.5.5

replica-announce-port 1234

And are documented in the example redis.conf of recent Redis distributions.

The INFO and ROLE command
There are two Redis commands that provide a lot of information on the current replication parameters of

Firefox https://redis.io/docs/manual/replication/

6 von 7 02.07.2022, 15:02

https://redis.io/docs/manual/replication/#how-redis-replication-deals-with-expires-on-keys
https://redis.io/docs/manual/replication/#how-redis-replication-deals-with-expires-on-keys
https://redis.io/docs/manual/replication/#how-redis-replication-deals-with-expires-on-keys
https://redis.io/commands/del
https://redis.io/commands/del
https://redis.io/commands/del
https://redis.io/commands/del
https://redis.io/commands/del
https://redis.io/commands/del
https://redis.io/docs/manual/replication/#configuring-replication-in-docker-and-nat
https://redis.io/docs/manual/replication/#configuring-replication-in-docker-and-nat
https://redis.io/docs/manual/replication/#configuring-replication-in-docker-and-nat
https://redis.io/commands/info
https://redis.io/commands/info
https://redis.io/commands/info
https://redis.io/commands/role
https://redis.io/commands/role
https://redis.io/commands/role
https://redis.io/commands/role
https://redis.io/commands/role
https://redis.io/commands/role
https://redis.io/commands/info
https://redis.io/commands/info
https://redis.io/commands/info
https://redis.io/docs/manual/replication/#the-info-and-role-command
https://redis.io/docs/manual/replication/#the-info-and-role-command
https://redis.io/docs/manual/replication/#the-info-and-role-command

master and replica instances. One is INFO . If the command is called with the replication argument as

INFO replication only information relevant to the replication are displayed. Another more computer-friendly

command is ROLE , that provides the replication status of masters and replicas together with their

replication offsets, list of connected replicas and so forth.

Partial sync after restarts and failovers
Since Redis 4.0, when an instance is promoted to master after a failover, it will be still able to perform a
partial resynchronization with the replicas of the old master. To do so, the replica remembers the old
replication ID and offset of its former master, so can provide part of the backlog to the connecting replicas
even if they ask for the old replication ID.

However the new replication ID of the promoted replica will be different, since it constitutes a different
history of the data set. For example, the master can return available and can continue accepting writes for
some time, so using the same replication ID in the promoted replica would violate the rule that a replication
ID and offset pair identi�ies only a single data set.

Moreover, replicas - when powered off gently and restarted - are able to store in the RDB �ile the information

needed to resync with their master. This is useful in case of upgrades. When this is needed, it is better to use
the SHUTDOWN command in order to perform a save & quit operation on the replica.

It is not possible to partially sync a replica that restarted via the AOF �ile. However the instance may be
turned to RDB persistence before shutting down it, than can be restarted, and �inally AOF can be enabled
again.

Maxmemory on replicas
By default, a replica will ignore maxmemory (unless it is promoted to master after a failover or manually). It

means that the eviction of keys will be handled by the master, sending the DEL commands to the replica as
keys evict in the master side.

This behavior ensures that masters and replicas stay consistent, which is usually what you want. However, if
your replica is writable, or you want the replica to have a different memory setting, and you are sure all the
writes performed to the replica are idempotent, then you may change this default (but be sure to understand
what you are doing).

Note that since the replica by default does not evict, it may end up using more memory than what is set via
maxmemory (since there are certain buffers that may be larger on the replica, or data structures may

sometimes take more memory and so forth). Make sure you monitor your replicas, and make sure they have
enough memory to never hit a real out-of-memory condition before the master hits the con�igured
maxmemory setting.

To change this behavior, you can allow a replica to not ignore the maxmemory . The con�iguration directives to

use is:

replica-ignore-maxmemory no…

Firefox https://redis.io/docs/manual/replication/

7 von 7 02.07.2022, 15:02

https://redis.io/commands/info
https://redis.io/commands/info
https://redis.io/commands/info
https://redis.io/commands/role
https://redis.io/commands/role
https://redis.io/commands/role
https://redis.io/docs/manual/replication/#partial-sync-after-restarts-and-failovers
https://redis.io/docs/manual/replication/#partial-sync-after-restarts-and-failovers
https://redis.io/docs/manual/replication/#partial-sync-after-restarts-and-failovers
https://redis.io/commands/shutdown
https://redis.io/commands/shutdown
https://redis.io/commands/shutdown
https://redis.io/docs/manual/replication/#maxmemory-on-replicas
https://redis.io/docs/manual/replication/#maxmemory-on-replicas
https://redis.io/docs/manual/replication/#maxmemory-on-replicas

