Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

by Pivotal

Spring Data Redis

Costin Leau, Jennifer Hickey, Christoph Strobl, Thomas Darimont, Mark Paluch, Jay Bryant - - Version 2.6.0, 2021-11-12

Preface

1. Learning Spring

2. Learning NoSQL and Key Value Stores
2.1. Trying out the Samples

3. Requirements

4. Additional Help Resources

5. Following Development

6. New & Noteworthy
6.1. New in Spring Data Redis 2.6
6.2. New in Spring Data Redis 2.5
6.3. New in Spring Data Redis 2.4
6.4. New in Spring Data Redis 2.3
6.5. New in Spring Data Redis 2.2
6.6. New in Spring Data Redis 2.1
6.7. New in Spring Data Redis 2.0

1 von 142 22.11.2021. 15:58

Spring Data Redis

6.8. New in Spring Data Redis 1.8
6.9. New in Spring Data Redis 1.7
6.10. New in Spring Data Redis 1.6
6.11. New in Spring Data Redis 1.5
7. Dependencies
7.1. Dependency Management with Spring Boot
7.2. Spring Framework
Reference Documentation
8. Introduction
8.1. Document Structure
9. Why Spring Data Redis?
10. Redis support
10.1. Getting Started
10.2. Redis Requirements
10.3. Redis Support High-level View
10.4. Connecting to Redis
10.4.1. RedisConnection and RedisConnectionFactory
10.4.2. Configuring the Lettuce Connector
10.4.3. Configuring the Jedis Connector
10.4.4. Write to Master, Read from Replica
10.5. Redis Sentinel Support
10.6. Working with Objects through RedisTemplate

10.7. String-focused Convenience Classes

2 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

10.8. Serializers
10.9. Hash mapping
10.9.1. Hash Mappers
10.9.2. Jackson2HashMapper
10.10. Redis Messaging (Pub/Sub)
10.10.1. Publishing (Sending Messages)
10.10.2. Subscribing (Receiving Messages)
Message Listener Containers
The MessagelistenerAdapter
10.11. Redis Streams
10.11.1. Appending
10.11.2. Consuming
Synchronous reception
Asynchronous reception through Message Listener Containers
Acknowledge strategies
ReadOffset strategies
Serialization
Object Mapping
10.12. Redis Transactions
10.12.1. @Transactional Support
10.13. Pipelining
10.14. Redis Scripting
10.14.1. Redis Cache

3 von 142 22.11.2021. 15:58

Spring Data Redis

10.15. Support Classes
11. Reactive Redis support
11.1. Redis Requirements
11.2. Connecting to Redis by Using a Reactive Driver

11.2.1. Redis Operation Modes

11.2.2. ReactiveRedisConnection and ReactiveRedisConnectionFactory

11.2.3. Configuring a Lettuce Connector

11.3. Working with Objects through ReactiveRedisTemplate

11.4. String-focused Convenience Classes
11.5. Redis Messaging/PubSub
11.5.1. Sending/Publishing messages
11.5.2. Receiving/Subscribing for messages
Message Listener Containers
Subscribing via template API
11.6. Reactive Scripting
12. Redis Cluster
12.1. Enabling Redis Cluster
12.2. Working With Redis Cluster Connection
12.3. Working with RedisTemplate and ClusterOperations
13. Redis Repositories
13.1. Usage
13.2. Object Mapping Fundamentals
13.2.1. Object creation

4 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

13.2.2. Property population
13.2.3. General recommendations
Overriding Properties
13.2.4. Kotlin support
Kotlin object creation
Property population of Kotlin data classes
Kotlin Overriding Properties
13.3. Object-to-Hash Mapping
13.3.1. Customizing Type Mapping
Configuring Custom Type Mapping
13.4. Keyspaces
13.5. Secondary Indexes
13.5.1. Simple Property Index
13.5.2. Geospatial Index
13.6. Query by Example
13.6.1. Introduction
13.6.2. Usage
13.6.3. Example Matchers
13.6.4. Running an Example
13.7. Time To Live
13.8. Persisting References
13.9. Persisting Partial Updates
13.10. Queries and Query Methods

5 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub
13.10.1. Sorting Query Method results
13.11. Redis Repositories Running on a Cluster
13.12. CDI Integration
13.13. Redis Repositories Anatomy
13.13.1. Insert new
13.13.2. Replace existing
13.13.3. Save Geo Data
13.13.4. Find using simple index
13.13.5. Find using Geo Index
Appendixes
Appendix Document Structure
Appendix A: Schema
Appendix B: Command Reference

Supported Commands

© 2011-2021 The original authors.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any

fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or
electronically.

6 von 142 22.11.2021. 15:58

Spring Data Redis

7 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Preface

The Spring Data Redis project applies core Spring concepts to the development of solutions by using a key-value style data store.
We provide a “template” as a high-level abstraction for sending and receiving messages. You may notice similarities to the JDBC
support in the Spring Framework.

This section provides an easy-to-follow guide for getting started with the Spring Data Redis module.

1. Learning Spring
Spring Data uses Spring framework’s core functionality, including:

e [oC container

type conversion system

expression language

JMXintegration

DAO exception hierarchy.

While you need not know the Spring APIs, understanding the concepts behind them is important. At a minimum, the idea behind
Inversion of Control (IoC) should be familiar, and you should be familiar with whatever loC container you choose to use.

The core functionality of the Redis support can be used directly, with no need to invoke the loC services of the Spring Container.
This is much like 3dbcTemplate , which can be used "'standalone™ without any other services of the Spring container. To leverage

all the features of Spring Data Redis, such as the repository support, you need to configure some parts of the library to use Spring.

To learn more about Spring, you can refer to the comprehensive documentation that explains the Spring Framework in detail.
There are a lot of articles, blog entries, and books on the subject. See the Spring framework home page for more information.

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

In general, this should be the starting point for developers wanting to try Spring Data Redis.

2. Learning NoSQL and Key Value Stores

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions, terms, and patterns (to make
things worse, even the term itself has multiple meanings). While some of the principles are common, it is crucial that you be
familiar to some degree with the stores supported by SDR. The best way to get acquainted with these solutions is to read their
documentation and follow their examples. It usually does not take more then five to ten minutes to go through them and, if you
come from an RDMBS-only background, many times these exercises can be eye-openers.

2.1. Trying out the Samples

One can find various samples for key-value stores in the dedicated Spring Data example repo, at https://github.com/spring-
projects/spring-data-keyvalue-examples. For Spring Data Redis, you should pay particular attention to the retwisj sample, a
Twitter-clone built on top of Redis that can be run locally or be deployed into the cloud. See its documentation, the following blog
entry for more information.

3. Requirements
Spring Data Redis 2.x binaries require JDK level 8.0 and above and Spring Framework 5.3.13 and above.

In terms of key-value stores, Redis 2.6.x or higher is required. Spring Data Redis is currently tested against the latest 4.0 release.

8 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

4. Additional Help Resources

Learning a new framework is not always straightforward. In this section, we try to provide what we think is an easy-to-follow guide
for starting with the Spring Data Redis module. However, if you encounter issues or you need advice, feel free to use one of the
following links:

Community Forum

Spring Data on Stack Overflow is a tag for all Spring Data (not just Document) users to share information and help each other.
Note that registration is needed only for posting.

Professional Support

Professional, from-the-source support, with guaranteed response time, is available from Pivotal Sofware, Inc., the company
behind Spring Data and Spring.

9 von 142 22.11.2021. 15:58

Spring Data Redis

10 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

5. Following Development
For information on the Spring Data source code repository, nightly builds, and snapshot artifacts, see the Spring Data home page.

You can help make Spring Data best serve the needs of the Spring community by interacting with developers on Stack Overflow at
either spring-data or spring-data-redis.

If you encounter a bug or want to suggest an improvement (including to this documentation), please create a ticket on Github.
To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the Spring Community Portal.

Lastly, you can follow the Spring blog or the project team (@SpringData) on Twitter.

6. New & Noteworthy

This section briefly covers items that are new and noteworthy in the latest releases.

6.1. New in Spring Data Redis 2.6

e Support for subscriptionListener When using MessageListener for subscription confirmation callbacks.
ReactiveRedisMessagelistenerContainer and ReactiveRedisOperations provide receiveLater(..) and listenToLater(..) methods
to await until Redis acknowledges the subscription.

e Support Redis 6.2 commands (Lpop / RPOP With count , LMOVE / BLMOVE , COPY, GETEX , GETDEL , GEOSEARCH , GEOSEARCHSTORE ,

ZPOPMIN , BZPOPMIN , ZPOPMAX , BZPOPMAX , ZMSCORE , ZDIFF , ZDIFFSTORE , ZINTER, ZUNION , HRANDFIELD , ZRANDMEMBER , SMISMEMBER).

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

6.2. New in Spring Data Redis 2.5

e MappingRedisConverter NO longer converts byte arrays to a collection representation.

6.3. New in Spring Data Redis 2.4

® RedisCache NOW eXposes CacheStatistics.

e ACL authentication support for Redis Standalone, Redis Cluster and Master/Replica.
e Password support for Redis Sentinel using Jedis.

e Support for ZREVRANGEBYLEX and ZLEXCOUNT commands.

e Support for Stream Commands using Jedis.

6.4. New in Spring Data Redis 2.3

e Template API Method Refinements for buration and Instant .

e Extension of Stream Commands.

6.5. New in Spring Data Redis 2.2

Redis Streams

Refined union / diff / intersect set-operation methods accepting a single collection of keys.

Upgrade to Jedis 3.

Add support for scripting commands using Jedis Cluster.

11 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

6.6. New in Spring Data Redis 2.1

» Unix domain socket connections using Lettuce.

Write to Master, read from Replica support using Lettuce.

Query by Example integration.

@TypeAlias Support for Redis repositories.

Cluster-wide scan using Lettuce and scan on a selected node supported by both drivers.

Reactive Pub/Sub to send and receive a message stream.

BITFIELD , BITPOS , and OBJECT command support.

Align return types of BoundzSetOperations With zSetOperations .

Reactive SCAN, HSCAN, SSCAN,and ZSCAN support.

Usage of 1sTrue and IsFalse keywords in repository query methods.

6.7. New in Spring Data Redis 2.0

¢ Upgrade to Java 8.

¢ Upgrade to Lettuce 5.0.

e Removed support for SRP and JRedis drivers.

¢ Reactive connection support using Lettuce.

* Introduce Redis feature-specific interfaces for RedisConnection .

L Improved RedisConnectionFactory configuration with JedisClientConfiguration and LettuceClientConfiguration .

e Revised RedisCache implementation.

12 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

e Add spop with count command for Redis 3.2.

6.8. New in Spring Data Redis 1.8

Upgrade to Jedis 2.9.

Upgrade to Lettuce 4.2 (Note: Lettuce 4.2 requires Java 8).

Support for Redis GEO commands.

Support for Geospatial Indexes using Spring Data Repository abstractions (see Geospatial Index).
e MappingRedisConverter -based HashMapper implementation (see Hash mapping).

e Support for Partialupdate in repositories (see Persisting Partial Updates).

e SSL support for connections to Redis cluster.

e Support for client name through connectionFactory when using Jedis.

6.9. New in Spring Data Redis 1.7

 Support for RedisCluster.

¢ Support for Spring Data Repository abstractions (see Redis Repositories).

6.10. New in Spring Data Redis 1.6

e The Lettuce Redis driver switched from wg/lettuce to mp911de/lettuce.
¢ Support for ZRANGEBYLEX .
¢ Enhanced range operations for zset, including +inf / -inf.

e Performance improvements in RedisCache , NOW releasing connections earlier.

13 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

e Generic Jackson2 RedisSerializer making use of Jackson’s polymorphic deserialization.

6.11. New in Spring Data Redis 1.5

¢ Add support for Redis HyperLoglLog commands: PFADD , PFCOUNT , and PFMERGE .
e Configurable 3JavaType lookup for Jackson-based RedisSerializers .

¢ PropertySource -based configuration for connecting to Redis Sentinel (see: Redis Sentinel Support).

7. Dependencies

Due to the different inception dates of individual Spring Data modules, most of them carry different major and minor version
numbers. The easiest way to find compatible ones is to rely on the Spring Data Release Train BOM that we ship with the
compatible versions defined. In a Maven project, you would declare this dependency in the <dependencyManagement /> section of
your POM as follows:

Example 1. Using the Spring Data release train BOM

14 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

XML
<dependencyManagement>

<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-bom</artifactId>
<version>2021.1.0</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

The current release train version is 2e021.1.e . The train version uses calver with the pattern yyyy.MINOR.MICRO . The version name
follows ${calver} for GA releases and service releases and the following pattern for all other versions: ${calver}-${modifier} ,
where modifier can be one of the following:

¢ SNAPSHOT : Current snapshots
e M1, M2, and so on: Milestones
e RC1, RC2,and soon: Release candidates

You can find a working example of using the BOMs in our Spring Data examples repository. With that in place, you can declare the
Spring Data modules you would like to use without a version in the <dependencies /> block, as follows:

Example 2. Declaring a dependency to a Spring Data module

. XML
<dependencies>

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactId>
</dependency>

15 von 142

22.11.2021. 15:58

Spring Data Redis

16 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

<dependencies>

7.1. Dependency Management with Spring Boot

Spring Boot selects a recent version of Spring Data modules for you. If you still want to upgrade to a newer version, set the
spring-data-releasetrain.version property to the train version and iteration you would like to use.

7.2. Spring Framework

The current version of Spring Data modules require Spring Framework 5.3.13 or better. The modules might also work with an

older bugfix version of that minor version. However, using the most recent version within that generation is highly recommended.

Reference Documentation

8. Introduction

8.1. Document Structure

This part of the reference documentation explains the core functionality offered by Spring Data Redis. It explains Key-Value
module concepts and semantics and the syntax for various stores namespaces. For an introduction to key-value stores, Spring, or
Spring Data examples, see Learning NoSQL and Key Value Stores. This documentation refers only to Spring Data Redis Support
and assumes the user is familiar with key-value storage and Spring concepts.

“Redis support” introduces the Redis module feature set.

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

“Redis Repositories” introduces the repository support for Redis.

This document is the reference guide for Spring Data Redis (SDR) Support.

9. Why Spring Data Redis?

The Spring Framework is the leading full-stack Java/JEE application framework. It provides a lightweight container and a non-
invasive programming model enabled by the use of dependency injection, AOP, and portable service abstractions.

NoSQL storage systems provide an alternative to classical RDBMS for horizontal scalability and speed. In terms of implementation,
key-value stores represent one of the largest (and oldest) members in the NoSQL space.

The Spring Data Redis (SDR) framework makes it easy to write Spring applications that use the Redis key-value store by eliminating
the redundant tasks and boilerplate code required for interacting with the store through Spring'’s excellent infrastructure support.

10. Redis support

One of the key-value stores supported by Spring Data is Redis. To quote the Redis project home page:

Redis is an advanced key-value store. It is similar to memcached but the dataset is not volatile, and values can be strings,
exactly like in memcached, but also lists, sets, and ordered sets. All this data types can be manipulated with atomic
operations to push/pop elements, add/remove elements, perform server side union, intersection, difference between

sets, and so forth. Redis supports different kind of sorting abilities.

Spring Data Redis provides easy configuration and access to Redis from Spring applications. It offers both low-level and high-level
abstractions for interacting with the store, freeing the user from infrastructural concerns.

17 von 142 22.11.2021. 15:58

Spring Data Redis

10.1. Getting Started

An easy way to setting up a working environment is to create a Spring-based project in STS.
First, you need to set up a running Redis server.

To create a Spring project in STS:

1. Go to File - New — Spring Template Project — Simple Spring Utility Project, and press Yes when prompted. Then enter a
project and a package name, such as org.spring.redis.example . .Add the following to the pom.xml files dependencies element:
XML

<dependencies>

<!-- other dependency elements omitted -->

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactId>
<version>2.6.0</version>

</dependency>

</dependencies>

2. Change the version of Spring in the pom.xml to be
XML

<spring.framework.version>5.3.13</spring.framework.version>

3. Add the following location of the Spring Milestone repository for Maven to your pom.xml such thatitis at the same level of

your <dependencies/> element:
XML

<repositories>
<repository>
<id>spring-milestone</id>

18 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

<name>Spring Maven MILESTONE Repository</name>
<url>https://repo.spring.io/libs-milestone</url>
</repository>
</repositories>

The repository is also browseable here.

10.2. Redis Requirements

Spring Redis requires Redis 2.6 or above and Spring Data Redis integrates with Lettuce and Jedis, two popular open-source Java
libraries for Redis.

10.3. Redis Support High-level View

The Redis support provides several components. For most tasks, the high-level abstractions and support services are the best
choice. Note that, at any point, you can move between layers. For example, you can get a low-level connection (or even the native
library) to communicate directly with Redis.

10.4. Connecting to Redis

One of the first tasks when using Redis and Spring is to connect to the store through the loC container. To do that, a Java
connector (or binding) is required. No matter the library you choose, you need to use only one set of Spring Data Redis APIs (which
behaves consistently across all connectors): the org.springframework.data.redis.connection package and its RedisConnection and
RedisConnectionFactory interfaces for working with and retrieving active connections to Redis.

10.4.1. RedisConnection and RedisConnectionFactory

RedisConnection provides the core building block for Redis communication, as it handles the communication with the Redis back
end. It also automatically translates the underlying connecting library exceptions to Spring's consistent DAO exception hierarchy

19 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

so that you can switch the connectors without any code changes, as the operation semantics remain the same.

For the corner cases where the native library API is required, RedisConnection provides a dedicated method
(getNativeConnection) that returns the raw, underlying object used for communication.

Active RedisConnection Objects are created through RedisConnectionFactory . In addition, the factory acts as
PersistenceExceptionTranslator Objects, meaning that, once declared, they let you do transparent exception translation. For

example, you can do exception translation through the use of the @Repository annotation and AOP. For more information, see
the dedicated section in the Spring Framework documentation.

Depending on the underlying configuration, the factory can return a new connection or an existing connection (when a pool
or shared native connection is used).

The easiest way to work with a RedisConnectionFactory is to configure the appropriate connector through the loC container and
inject it into the using class.

Unfortunately, currently, not all connectors support all Redis features. When invoking a method on the Connection API that is

unsupported by the underlying library, an unsupportedoperationException is thrown. The following overview explains features that
are supported by the individual Redis connectors:

Table 1. Feature Availability across Redis Connectors

Supported Feature Lettuce Jedis

Standalone Connections X X

20 von 142 22.11.2021. 15:58

Spring Data Redis

21 von 142

Supported Feature
Master/Replica Connections

Redis Sentinel

Redis Cluster

Transport Channels

Connection Pooling

Other Connection Features

SSL Support
Pub/Sub
Pipelining
Transactions

Datatype support

Reactive (non-blocking) API

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Lettuce
X

Master Lookup, Sentinel Authentication,
Replica Reads

Cluster Connections, Cluster Node
Connections, Replica Reads

TCP, OS-native TCP (epoll, kqueue), Unix
Domain Sockets

X (using commons-pool2)

Singleton-connection sharing for non-
blocking commands

X
X
X
X

Key, String, List, Set, Sorted Set, Hash,
Server, Stream, Scripting, Geo,
HyperLoglLog

X

Jedis

Master Lookup

Cluster Connections, Cluster Node
Connections

TCP

X (using commons-pool2)

JedisShardInfo support

X
X

Key, String, List, Set, Sorted Set, Hash,
Server, Scripting, Geo, HyperLoglLog

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

10.4.2. Configuring the Lettuce Connector

Lettuce is a Netty-based open-source connector supported by Spring Data Redis through the

org.springframework.data.redis.connection.lettuce package.
Add the following to the pom.xml files dependencies element:

<dependencies>
<!-- other dependency elements omitted -->

<dependency>
<groupId>io.lettuce</groupId>
<artifactId>lettuce-core</artifactId>
<version>6.1.5.RELEASE</version>
</dependency>

</dependencies>

The following example shows how to create a new Lettuce connection factory:

@Configuration
class AppConfig {

@Bean
public LettuceConnectionFactory redisConnectionFactory() {

return new LettuceConnectionFactory(new RedisStandaloneConfiguration("server", 6379));

}
}

There are also a few Lettuce-specific connection parameters that can be tweaked. By default, all LettuceConnection instances

XML

JAVA

created by the LettuceConnectionFactory share the same thread-safe native connection for all non-blocking and non-transactional

operations. To use a dedicated connection each time, set shareNativeConnection tO false . LettuceConnectionFactory can also be

22 von 142

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

configured to use a LettucePool for pooling blocking and transactional connections or all connections if shareNativeConnection iS
setto false.

Lettuce integrates with Netty’'s native transports, letting you use Unix domain sockets to communicate with Redis. Make sure to
include the appropriate native transport dependencies that match your runtime environment. The following example shows how
to create a Lettuce Connection factory for a Unix domain socket at /var/run/redis.sock :

JAVA
@Configuration

class AppConfig {

@Bean
public LettuceConnectionFactory redisConnectionFactory() {

return new LettuceConnectionFactory(new RedisSocketConfiguration("/var/run/redis.sock™));
}
}

Netty currently supports the epoll (Linux) and kqueue (BSD/macOS) interfaces for OS-native transport.

10.4.3. Configuring the Jedis Connector

Jedis is a community-driven connector supported by the Spring Data Redis module through the

org.springframework.data.redis.connection.jedis package.

Add the following to the pom.xml files dependencies element:

. XML
<dependencies>

<!-- other dependency elements omitted -->

23 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version»3.7.0</version>
</dependency>

</dependencies>

In its simplest form, the Jedis configuration looks as follow:

JAVA
@Configuration

class AppConfig {

@Bean
public JedisConnectionFactory redisConnectionFactory() {
return new JedisConnectionFactory();

}
}

For production use, however, you might want to tweak settings such as the host or password, as shown in the following example:

. . JAVA
@Configuration

class RedisConfiguration {

@Bean
public JedisConnectionFactory redisConnectionFactory() {

RedisStandaloneConfiguration config = new RedisStandaloneConfiguration("server", 6379);

return new JedisConnectionFactory(config);

}
}

10.4.4. Write to Master, Read from Replica

24 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

The Redis Master/Replica setup — without automatic failover (for automatic failover see: Sentinel) —not only allows data to be
safely stored at more nodes. It also allows, by using Lettuce, reading data from replicas while pushing writes to the master. You
can set the read/write strategy to be used by using LettuceClientConfiguration , as shown in the following example:

JAVA
@Configuration

class WriteToMasterReadFromReplicaConfiguration {

@Bean
public LettuceConnectionFactory redisConnectionFactory() {

LettuceClientConfiguration clientConfig = LettuceClientConfiguration.builder()
.readFrom(REPLICA_PREFERRED)
.build();

RedisStandaloneConfiguration serverConfig = new RedisStandaloneConfiguration(“"server", 6379);

return new LettuceConnectionFactory(serverConfig, clientConfig);

}
}

For environments reporting non-public addresses through the 1nFo command (for example, when using AWS), use
RedisStaticMasterReplicaConfiguration instead of RedisStandaloneConfiguration . Please note that
RedisStaticMasterReplicaConfiguration does not support Pub/Sub because of missing Pub/Sub message propagation across

individual servers.

10.5. Redis Sentinel Support

For dealing with high-availability Redis, Spring Data Redis has support for Redis Sentinel, using RedisSentinelConfiguration , as
shown in the following example:

25 von 142 22.11.2021. 15:58

Spring Data Redis

26 von 142

Vike
* Jedis
*/
@Bean
public RedisConnectionFactory jedisConnectionFactory() {
RedisSentinelConfiguration sentinelConfig = new RedisSentinelConfiguration()
.master("mymaster")
.sentinel("127.0.0.1", 26379)
.sentinel("127.0.0.1", 26380);
return new JedisConnectionFactory(sentinelConfig);

}

Vika
* Lettuce
*/
@Bean
public RedisConnectionFactory lettuceConnectionFactory() {
RedisSentinelConfiguration sentinelConfig = new RedisSentinelConfiguration()
.master("mymaster")
.sentinel("127.0.0.1", 26379)
.sentinel("127.0.0.1", 26380);
return new LettuceConnectionFactory(sentinelConfig);

}

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

JAVA

RedisSentinelConfiguration can also be defined with a Propertysource , which lets you set the following properties:

Configuration Properties

e spring.redis.sentinel.master : name of the master node.

e spring.redis.sentinel.nodes : Comma delimited list of host:port pairs.

e spring.redis.sentinel.password : The password to apply when authenticating with Redis Sentinel

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Sometimes, direct interaction with one of the Sentinels is required. Using RedisConnectionFactory.getSentinelConnection() Or
RedisConnection.getSentinelCommands() gives you access to the first active Sentinel configured.

10.6. Working with Objects through RedisTemplate

Most users are likely to use RedisTemplate and its corresponding package, org.springframework.data.redis.core . The template is,
in fact, the central class of the Redis module, due to its rich feature set. The template offers a high-level abstraction for Redis
interactions. While RedisConnection offers low-level methods that accept and return binary values (byte arrays), the template
takes care of serialization and connection management, freeing the user from dealing with such details.

Moreover, the template provides operations views (following the grouping from the Redis command reference) that offer rich,
generified interfaces for working against a certain type or certain key (through the keyBound interfaces) as described in the
following table:

Table 2. Operational views

Interface Description
Key Type Operations
GeoOperations Redis geospatial operations, such as GEOADD , GEORADIUS ,...
HashOperations Redis hash operations
HyperLoglLogOperations Redis HyperLogLog operations, such as PFADD , PFCOUNT ,...
ListOperations Redis list operations
SetOperations Redis set operations

27 von 142 22.11.2021. 15:58

Spring Data Redis

28 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Interface Description
ValueOperations Redis string (or value) operations
ZSetOperations Redis zset (or sorted set) operations

Key Bound Operations
BoundGeoOperations Redis key bound geospatial operations
BoundHashOperations Redis hash key bound operations
BoundKeyOperations Redis key bound operations
BoundListOperations Redis list key bound operations
BoundSetOperations Redis set key bound operations
BoundValueOperations Redis string (or value) key bound operations
BoundZSetOperations Redis zset (or sorted set) key bound operations

Once configured, the template is thread-safe and can be reused across multiple instances.

RedisTemplate USes aJava-based serializer for most of its operations. This means that any object written or read by the template is
serialized and deserialized through Java. You can change the serialization mechanism on the template, and the Redis module
offers several implementations, which are available in the org.springframework.data.redis.serializer package. See Serializers for
more information. You can also set any of the serializers to null and use RedisTemplate with raw byte arrays by setting the

enableDefaultSerializer propertyto false . Note that the template requires all keys to be non-null. However, values can be null
as long as the underlying serializer accepts them. Read the Javadoc of each serializer for more information.

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

For cases where you need a certain template view, declare the view as a dependency and inject the template. The container
automatically performs the conversion, eliminating the opsfFor[x] calls, as shown in the following example:

XML
<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="jedisConnectionFactory"” class="org.springframework.data.redis.connection.jedis.JedisConnectionFactory" p:use-pool="true"
<!-- redis template definition -->

<bean id="redisTemplate" class="org.springframework.data.redis.core.RedisTemplate"” p:connection-factory-ref="jedisConnectionFactor

</beans>

JAVA
public class Example {

// inject the actual template
@Autowired
private RedisTemplate<String, String> template;

// 1inject the template as ListOperations
@Resource(name="redisTemplate")

private ListOperations<String, String> 1listOps;

public void addLink(String userId, URL url) {
listOps.leftPush(userId, url.toExternalForm());
}
}

10.7. String-focused Convenience Classes

Since it is quite common for the keys and values stored in Redis to be java.lang.string, the Redis modules provides two

29 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

extensions to RedisConnection and RedisTemplate , respectively the stringRedisConnection (and itS DefaultStringRedisConnection
implementation) and stringRedisTemplate as a convenient one-stop solution for intensive String operations. In addition to being
bound to string keys, the template and the connection use the stringRedisSerializer underneath, which means the stored keys

and values are human-readable (assuming the same encoding is used both in Redis and your code). The following listings show an
example:

XML
<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalLocation="http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="jedisConnectionFactory" class="org.springframework.data.redis.connection.jedis.JedisConnectionFactory" p:use-pool="true"

<bean id="stringRedisTemplate" class="org.springframework.data.redis.core.StringRedisTemplate" p:connection-factory-ref="jedisConn

</beans>

JAVA
public class Example {

@Autowired
private StringRedisTemplate redisTemplate;

public void addLink(String userId, URL url) {
redisTemplate.opsForList().leftPush(userId, url.toExternalForm());
}
}

As with the other Spring templates, RedisTemplate and StringRedisTemplate let you talk directly to Redis through the
RedisCallback interface. This feature gives complete control to you, as it talks directly to the RedisConnection . Note that the

callback receives an instance of stringRedisConnection when a StringRedisTemplate is used. The following example shows how to
use the RedisCallback interface:

30 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

JAVA
public void useCallback() {

redisTemplate.execute(new RedisCallback<Object>() {
public Object doInRedis(RedisConnection connection) throws DataAccessException {
Long size = connection.dbSize();

// Can cast to StringRedisConnection if using a StringRedisTemplate
((StringRedisConnection)connection).set("key", "value");

}
s

10.8. Serializers

From the framework perspective, the data stored in Redis is only bytes. While Redis itself supports various types, for the most
part, these refer to the way the data is stored rather than what it represents. It is up to the user to decide whether the information
gets translated into strings or any other objects.

In Spring Data, the conversion between the user (custom) types and raw data (and vice-versa) is handled Redis in the

org.springframework.data.redis.serializer package.
This package contains two types of serializers that, as the name implies, take care of the serialization process:

e Two-way serializers based on RedisSerializer .

e Element readers and writers that use RedisElementReader and RedisElementWriter .

The main difference between these variants is that RedisSerializer primarily serializes to byte[] while readers and writers use

ByteBuffer .
Multiple implementations are available (including two that have been already mentioned in this documentation):

e JdkSerializationRedisSerializer , Which is used by default for RedisCache and RedisTemplate .

31 von 142

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

e the stringRedisSerializer .

However one can use oxmserializer for Object/XML mapping through Spring OXM support or Jackson2JsonRedisSerializer OF
GenericJackson2JsonRedisSerializer for storing data in JSON format.

Do note that the storage format is not limited only to values. It can be used for keys, values, or hashes without any restrictions.

By default, Rediscache and RedisTemplate are configured to use Java native serialization. Java native serialization is known
for allowing the running of remote code caused by payloads that exploit vulnerable libraries and classes injecting unverified
bytecode. Manipulated input could lead to unwanted code being run in the application during the deserialization step. As a
consequence, do not use serialization in untrusted environments. In general, we strongly recommend any other message
format (such as JSON) instead.

If you are concerned about security vulnerabilities due to Java serialization, consider the general-purpose serialization filter
mechanism at the core JVM level, originally developed for JDK 9 but backported to JDK 8, 7, and 6:

e Filter Incoming Serialization Data.
e JEP 290.

e OWASP: Deserialization of untrusted data.

10.9. Hash mapping

Data can be stored by using various data structures within Redis. Jackson2JsonRedisSerializer can convert objectsinJSON format.
Ideally, JSON can be stored as a value by using plain keys. You can achieve a more sophisticated mapping of structured objects by
using Redis hashes. Spring Data Redis offers various strategies for mapping data to hashes (depending on the use case):

32 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

¢ Direct mapping, by using Hashoperations and a serializer
e Using Redis Repositories

L Using HashMapper and HashOperations

10.9.1. Hash Mappers

Hash mappers are converters of map objects to a Map<k, v> and back. HashMapper is intended for using with Redis Hashes.
Multiple implementations are available:

e BeanUtilsHashMapper using Spring’s BeanUtils.
e ObjectHashMapper using Object-to-Hash Mapping.

e Jackson2HashMapper using FasterXML Jackson.

The following example shows one way to implement hash mapping:

. JAVA
public class Person {

String firstname;
String lastname;

/)
}

public class HashMapping {

@Autowired
HashOperations<String, byte[], byte[]> hashOperations;

HashMapper<Object, byte[], byte[]> mapper = new ObjectHashMapper();

public void writeHash(String key, Person person) {

33 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Map<byte[], byte[]> mappedHash = mapper.toHash(person);
hashOperations.putAll(key, mappedHash);

}

public Person loadHash(String key) {

Map<byte[], byte[]> loadedHash = hashOperations.entries("key");
return (Person) mapper.fromHash(loadedHash);

}

10.9.2. Jackson2HashMapper

Jackson2HashMapper provides Redis Hash mapping for domain objects by using FasterXML Jackson. Jackson2HashMapper can map
top-level properties as Hash field names and, optionally, flatten the structure. Simple types map to simple values. Complex types
(nested objects, collections, maps, and so on) are represented as nested JSON.

Flattening creates individual hash entries for all nested properties and resolves complex types into simple types, as far as possible.
Consider the following class and the data structure it contains:

JAVA
public class Person {

String firstname;

String lastname;

Address address;

Date date;

LocalDateTime localDateTime;

public class Address {
String city;
String country;

}

34 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

The following table shows how the data in the preceding class would appear in normal mapping:

Table 3. Normal Mapping

Hash Field Value

firstname Jon

lastname Snow

address { "city" : "Castle Black", "country" : "The North" }
date 1561543964015

localDateTime 2018-01-02T12:13:14

The following table shows how the data in the preceding class would appear in flat mapping:

Table 4. Flat Mapping

Hash Field Value
firstname Jon
lastname Snow
address.city Castle Black

address.country The North

35 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Hash Field Value
date 1561543964015
localDateTime 2018-01-02T12:13:14

Flattening requires all property names to not interfere with the JSON path. Using dots or brackets in map keys or as property
names is not supported when you use flattening. The resulting hash cannot be mapped back into an Object.

java.util.Date and java.util.Calendar are represented with milliseconds. JSR-310 Date/Time types are serialized to their

tostring form if jackson-datatype-jsr3ie is on the class path.

10.10. Redis Messaging (Pub/Sub)

Spring Data provides dedicated messaging integration for Redis, similar in functionality and naming to the JMS integration in

Spring Framework.
Redis messaging can be roughly divided into two areas of functionality:

e Publication or production of messages

e Subscription or consumption of messages

This is an example of the pattern often called Publish/Subscribe (Pub/Sub for short). The RedisTemplate class is used for message
production. For asynchronous reception similar to Java EE's message-driven bean style, Spring Data provides a dedicated message
listener container that is used to create Message-Driven POJOs (MDPs) and, for synchronous reception, the RedisConnection

36 von 142

22.11.2021. 15:58

Spring Data Redis

37 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

contract.

The org.springframework.data.redis.connection and org.springframework.data.redis.listener packages provide the core
functionality for Redis messaging.

10.10.1. Publishing (Sending Messages)

To publish a message, you can use, as with the other operations, either the low-level RedisConnection or the high-level

RedisTemplate . Both entities offer the publish method, which accepts the message and the destination channel as arguments.
While RedisConnection requires raw data (array of bytes), the RredisTemplate lets arbitrary objects be passed in as messages, as
shown in the following example:

JAVA
// send message through connection RedisConnection con = ...

byte[] msg = ...

byte[] channel = ...

con.publish(msg, channel); // send message through RedisTemplate
RedisTemplate template = ...

template.convertAndSend("hello!", "world");

10.10.2. Subscribing (Receiving Messages)

On the receiving side, one can subscribe to one or multiple channels either by naming them directly or by using pattern matching.
The latter approach is quite useful, as it not only lets multiple subscriptions be created with one command but can also listen on
channels not yet created at subscription time (as long as they match the pattern).

At the low-level, RedisConnection offersthe subscribe and psubscribe methods that map the Redis commands for subscribing by
channel or by pattern, respectively. Note that multiple channels or patterns can be used as arguments. To change the subscription
of a connection or query whether it is listening, RedisConnection providesthe getSubscription and isSubscribed methods.

22.11.2021. 15:58

Spring Data Redis

38 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Subscription commands in Spring Data Redis are blocking. That is, calling subscribe on a connection causes the current
thread to block as it starts waiting for messages. The thread is released only if the subscription is canceled, which happens
when another thread invokes unsubscribe Or punsubscribe On the same connection. See “Message Listener Containers”
(later in this document) for a solution to this problem.

As mentioned earlier, once subscribed, a connection starts waiting for messages. Only commands that add new subscriptions,
modify existing subscriptions, and cancel existing subscriptions are allowed. Invoking anything other than subscribe , pSubscribe ,
unsubscribe , OF pUnsubscribe throws an exception.

In order to subscribe to messages, one needs to implement the MessageListener callback. Each time a new message arrives, the
callback gets invoked and the user code gets run by the onvessage method. The interface gives access not only to the actual
message but also to the channel it has been received through and the pattern (if any) used by the subscription to match the
channel. This information lets the callee differentiate between various messages not just by content but also examining additional
details.

Message Listener Containers

Due to its blocking nature, low-level subscription is not attractive, as it requires connection and thread management for every
single listener. To alleviate this problem, Spring Data offers RedisMessagelListenerContainer , Which does all the heavy lifting. If you
are familiar with EJB and JMS, you should find the concepts familiar, as it is designed to be as close as possible to the supportin
Spring Framework and its message-driven POJOs (MDPs).

RedisMessagelListenerContainer acts as a message listener container. It is used to receive messages from a Redis channel and drive
the MessageListener instances that are injected into it. The listener container is responsible for all threading of message reception
and dispatches into the listener for processing. A message listener container is the intermediary between an MDP and a
messaging provider and takes care of registering to receive messages, resource acquisition and release, exception conversion,
and the like. This lets you as an application developer write the (possibly complex) business logic associated with receiving a
message (and reacting to it) and delegates boilerplate Redis infrastructure concerns to the framework.

22.11.2021. 15:58

Spring Data Redis

39 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

A "Messagelistener”™ can additionally implement “SubscriptionListener”™ to receive notifications upon subscription/unsubscribe confirm

Furthermore, to minimize the application footprint, RedisMessageListenerContainer lets one connection and one thread be shared
by multiple listeners even though they do not share a subscription. Thus, no matter how many listeners or channels an application
tracks, the runtime cost remains the same throughout its lifetime. Moreover, the container allows runtime configuration changes
so that you can add or remove listeners while an application is running without the need for a restart. Additionally, the container
uses a lazy subscription approach, using a RedisConnection only when needed. If all the listeners are unsubscribed, cleanup is
automatically performed, and the thread is released.

To help with the asynchronous nature of messages, the container requires a java.util.concurrent.Executor (Or Spring's
Taskexecutor) for dispatching the messages. Depending on the load, the number of listeners, or the runtime environment, you
should change or tweak the executor to better serve your needs. In particular, in managed environments (such as app servers), it
is highly recommended to pick a proper Taskexecutor to take advantage of its runtime.

The MessageListenerAdapter

The MessageListenerAdapter class is the final component in Spring's asynchronous messaging support. In a nutshell, it lets you
expose almost any class as a MDP (though there are some constraints).

Consider the following interface definition:

JAVA
public interface MessageDelegate {

void handleMessage(String message);

void handleMessage(Map message); void handleMessage(byte[] message);
void handleMessage(Serializable message);

// pass the channel/pattern as well

void handleMessage(Serializable message, String channel);

Notice that, although the interface does not extend the MessageListener interface, it can still be used as a MDP by using the

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

MessageListenerAdapter class. Notice also how the various message handling methods are strongly typed according to the
contents of the various Message types that they can receive and handle. In addition, the channel or pattern to which a message is
sent can be passed in to the method as the second argument of type string :

JAVA
public class DefaultMessageDelegate implements MessageDelegate {

// implementation elided for clarity...
}

Notice how the above implementation of the MessageDelegate interface (the above DefaultMessageDelegate class) has no Redis
dependencies at all. It truly is a POJO that we make into an MDP with the following configuration:

XML
<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:redis="http://www.springframework.org/schema/redis"
xsi:schemaLocation="http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/redis https://www.springframework.org/schema/redis/spring-redis.xsd">

<!-- the default ConnectionFactory -->
<redis:listener-container>
<!-- the method attribute can be skipped as the default method name is "handleMessage" -->
<redis:listener ref="listener" method="handleMessage" topic="chatroom" />
</redis:listener-container>

<bean id="listener" class="redisexample.DefaultMessageDelegate"/>

<beans>

The listener topic can be either a channel (for example, topic="chatroom") or a pattern (for example, topic="*room")

The preceding example uses the Redis namespace to declare the message listener container and automatically register the POJOs

40 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

as listeners. The full blown beans definition follows:

XML
<bean id="messagelistener" class="org.springframework.data.redis.listener.adapter.MessagelListenerAdapter">

<constructor-arg>
<bean class="redisexample.DefaultMessageDelegate"/>
</constructor-arg>
</bean>

<bean id="redisContainer" class="org.springframework.data.redis.listener.RedisMessagelListenerContainer">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="messagelListeners">
<map>
<entry key-ref="messagelListener">
<bean class="org.springframework.data.redis.listener.ChannelTopic">
<constructor-arg value="chatroom"/>
</bean>
</entry>
</map>
</property>
</bean>

Each time a message is received, the adapter automatically and transparently performs translation (using the configured
RedisSerializer) between the low-level format and the required object type. Any exception caused by the method invocation is
caught and handled by the container (by default, exceptions get logged).

10.11. Redis Streams

Redis Streams model a log data structure in an abstract approach. Typically, logs are append-only data structures and are
consumed from the beginning on, at a random position, or by streaming new messages.

Learn more about Redis Streams in the Redis reference documentation.

41 von 142 22.11.2021. 15:58

Spring Data Redis

42 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Redis Streams can be roughly divided into two areas of functionality:

» Appending records

e Consuming records

Although this pattern has similarities to Pub/Sub, the main difference lies in the persistence of messages and how they are
consumed.

While Pub/Sub relies on the broadcasting of transient messages (i.e. if you don't listen, you miss a message), Redis Stream use a
persistent, append-only data type that retains messages until the stream is trimmed. Another difference in consumption is that
Pub/Sub registers a server-side subscription. Redis pushes arriving messages to the client while Redis Streams require active

polling.

The org.springframework.data.redis.connection and org.springframework.data.redis.stream packages provide the core
functionality for Redis Streams.

10.11.1. Appending

To send a record, you can use, as with the other operations, either the low-level Redisconnection or the high-level
StreamOperations . Both entities offer the add (xAdd) method, which accepts the record and the destination stream as arguments.
While RedisConnection requires raw data (array of bytes), the streamoperations lets arbitrary objects be passed in as records, as
shown in the following example:

JAVA
// append message through connection

RedisConnection con = ..

byte[] stream = ..

ByteRecord record = StreamRecords.rawBytes(..).withStreamKey(stream);
con.xAdd(record);

// append message through RedisTemplate
RedisTemplate template = ..

22.11.2021. 15:58

Spring Data Redis

43 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

StringRecord record = StreamRecords.string(..).withStreamKey("my-stream");
template.streamOps().add(record);

Stream records carry a Map , key-value tuples, as their payload. Appending a record to a stream returns the Recordid that can be
used as further reference.

10.11.2. Consuming

On the consuming side, one can consume one or multiple streams. Redis Streams provide read commands that allow
consumption of the stream from an arbitrary position (random access) within the known stream content and beyond the stream
end to consume new stream record.

At the low-level, RedisConnection oOffersthe xRead and xReadGroup methods that map the Redis commands for reading and
reading within a consumer group, respectively. Note that multiple streams can be used as arguments.

Subscription commands in Redis can be blocking. That is, calling xrRead on a connection causes the current thread to block
as it starts waiting for messages. The thread is released only if the read command times out or receives a message.

To consume stream messages, one can either poll for messages in application code, or use one of the two Asynchronous
reception through Message Listener Containers, the imperative or the reactive one. Each time a new records arrives, the container
notifies the application code.

Synchronous reception

While stream consumption is typically associated with asynchronous processing, it is possible to consume messages
synchronously. The overloaded streamoperations.read(..) methods provide this functionality. During a synchronous receive, the
calling thread potentially blocks until a message becomes available. The property streamrReadoptions.block specifies how long the

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

receiver should wait before giving up waiting for a message.

JAVA
// Read message through RedisTemplate

RedisTemplate template = ..

List<MapRecord<K, HK, HV>> messages = template.streamOps().read(StreamReadOptions.empty().count(2),
StreamOffset.latest("my-stream"));

List<MapRecord<K, HK, HV>> messages = template.streamOps().read(Consumer.from("my-group"”, "my-consumer"),
StreamReadOptions.empty().count(2),

StreamOffset.create("my-stream”, ReadOffset.lastConsumed()))

Asynchronous reception through Message Listener Containers

Due to its blocking nature, low-level polling is not attractive, as it requires connection and thread management for every single
consumer. To alleviate this problem, Spring Data offers message listeners, which do all the heavy lifting. If you are familiar with EJB

and JMS, you should find the concepts familiar, as it is designed to be as close as possible to the support in Spring Framework and
its message-driven POJOs (MDPs).

Spring Data ships with two implementations tailored to the used programming model:

e StreamMessagelListenerContainer acts as message listener container for imperative programming models. It is used to consume
records from a Redis Stream and drive the streamListener instances that are injected into it.

e StreamReceiver provides a reactive variant of a message listener. It is used to consume messages from a Redis Stream as
potentially infinite stream and emit stream messages through a Flux .

StreamMessageListenerContainer and StreamReceiver are responsible for all threading of message reception and dispatch into the
listener for processing. A message listener container/receiver is the intermediary between an MDP and a messaging provider and
takes care of registering to receive messages, resource acquisition and release, exception conversion, and the like. This lets you as

an application developer write the (possibly complex) business logic associated with receiving a message (and reacting to it) and
delegates boilerplate Redis infrastructure concerns to the framework.

44 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Both containers allow runtime configuration changes so that you can add or remove subscriptions while an application is running
without the need for a restart. Additionally, the container uses a lazy subscription approach, using a RedisConnection only when
needed. If all the listeners are unsubscribed, it automatically performs a cleanup, and the thread is released.

Imperative StreamMessagelListenerContainer

In a fashion similar to a Message-Driven Bean (MDB) in the EJB world, the Stream-Driven POJO (SDP) acts as a receiver for Stream
messages. The one restriction on an SDP is that it must implement the org.springframework.data.redis.stream.StreamListener
interface. Please also be aware that in the case where your POJO receives messages on multiple threads, it is important to ensure
that your implementation is thread-safe.

JAVA
class ExampleStreamListener implements StreamListener<String, MapRecord<String, String, String>> {

@Override
public void onMessage(MapRecord<String, String, String> message) {

System.out.println("MessageId: " + message.getId());
System.out.println("Stream: " + message.getStream());
System.out.println("Body: " + message.getValue());

StreamListener represents a functional interface so implementations can be rewritten using their Lambda form:

JAVA
message -> {

System.out.println("MessagelId: "
System.out.println("Stream: "
System.out.println("Body: "

+ message.getId());
+ message.getStream());
+ message.getValue());

3

Once you've implemented your streamListener , it's time to create a message listener container and register a subscription:

45 von 142

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

JAVA
RedisConnectionFactory connectionFactory = ..

StreamListener<String, MapRecord<String, String, String>> streamListener = ..

StreamMessagelListenerContainerOptions<String, MapRecord<String, String, String>> containerOptions = StreamMessagelistenerContainerOp
.builder().pollTimeout(Duration.ofMillis(100)).build();

StreamMessagelListenerContainer<String, MapRecord<String, String, String>> container = StreamMessagelListenerContainer.create(connecti
containerOptions);

Subscription subscription = container.receive(StreamOffset.fromStart("my-stream"), streamListener);

Please refer to the Javadoc of the various message listener containers for a full description of the features supported by each
implementation.

Reactive StreamReceiver

Reactive consumption of streaming data sources typically happens through a Flux of events or messages. The reactive receiver
implementation is provided with streamReceiver and its overloaded receive(..) messages. The reactive approach requires fewer
infrastructure resources such as threads in comparison to streamMessageListenerContainer as it is leveraging threading resources
provided by the driver. The receiving stream is a demand-driven publisher of streamMessage :

JAVA
Flux<MapRecord<String, String, String>> messages = ..

return messages.doOnNext (it -> {
System.out.println("Messageld:
System.out.println("Stream: "
System.out.println("Body: "

+ message.getId());
+ message.getStream());
+ message.getValue());

1)
Now we need to create the streamReceiver and register a subscription to consume stream messages:

JAVA
ReactiveRedisConnectionFactory connectionFactory = ..

46 von 142

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

StreamReceiverOptions<String, MapRecord<String, String, String>> options = StreamReceiverOptions.builder().pollTimeout(Duration.ofMi
.build();

StreamReceiver<String, MapRecord<String, String, String>> receiver = StreamReceiver.create(connectionFactory, options);

Flux<MapRecord<String, String, String>> messages = receiver.receive(StreamOffset.fromStart("my-stream"));

Please refer to the Javadoc of the various message listener containers for a full description of the features supported by each
implementation.

Demand-driven consumption uses backpressure signals to activate and deactivate polling. streamReceiver subscriptions
pause polling if the demand is satisfied until subscribers signal further demand. Depending on the Readoffset strategy, this
can cause messages to be skipped.

Acknowledge strategies

When you read with messages via a consumer Group , the server will remember that a given message was delivered and add it to
the Pending Entries List (PEL). A list of messages delivered but not yet acknowledged.

Messages have to be acknowledged via Streamoperations.acknowledge in order to be removed from the Pending Entries List as
shown in the snippet below.

JAVA
StreamMessagelListenerContainer<String, MapRecord<String, String, String>> container = ...

container.receive(Consumer.from("my-group"”, "my-consumer"), 1
StreamOffset.create("my-stream”, ReadOffset.lastConsumed()),
msg -> {

/7 ...
redisTemplate.opsForStream().acknowledge("my-group", msg); 2

1)

47 von 142 22.11.2021. 15:58

Spring Data Redis

1 Read as my-consumer from group my-group. Received messages are not acknowledged.

2 Acknowledged the message after processing.

To auto acknowledge messages on receive use receiveAutoAck instead of receive .

Readoffset strategies

Stream read operations accept a read offset specification to consume messages from the given offset on. Readoffset represents
the read offset specification. Redis supports 3 variants of offsets, depending on whether you consume the stream standalone or
within a consumer group:

e ReadOffset.latest() - Read the latest message.
e ReadOffset.from(..) - Read after a specific message Id.

e ReadOffset.lastConsumed() - Read after the last consumed message Id (consumer-group only).

In the context of a message container-based consumption, we need to advance (or increment) the read offset when consuming a
message. Advancing depends on the requested Readoffset and consumption mode (with/without consumer groups). The
following matrix explains how containers advance Readoffset :

Table 5. ReadOffset Advancing

Read offset Standalone Consumer Group

Last Consumed Use last seen message as the next Messageld Last consumed message as per consumer group

48 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

49 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Read offset Standalone Consumer Group
Latest Read latest message Read latest message
Specific Message Id Use last seen message as the next Messageld Use last seen message as the next Messageld

Last Consumed Use last seen message as the next Messageld Last consumed message as per consumer group

Reading from a specific message id and the last consumed message can be considered safe operations that ensure consumption
of all messages that were appended to the stream. Using the latest message for read can skip messages that were added to the
stream while the poll operation was in the state of dead time. Polling introduces a dead time in which messages can arrive
between individual polling commands. Stream consumption is not a linear contiguous read but split into repeating xreap calls.

Serialization

Any Record sent to the stream needs to be serialized to its binary format. Due to the streams closeness to the hash data structure
the stream key, field names and values use the according serializers configured on the RedisTemplate .

Table 6. Stream Serialization

Stream Property Serializer Description

key keySerializer used for Record#getStream()

field hashKeySerializer used for each map key in the payload
value hashValueSerializer used for each map value in the payload

Please make sure to review RedisSerializer S in use and note that if you decide to not use any serializer you need to make sure
those values are binary already.

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Object Mapping

Simple Values

StreamOperations allows to append simple values, via objectRecord , directly to the stream without having to put those values into
a Map structure. The value will then be assigned to an payload field and can be extracted when reading back the value.

JAVA
ObjectRecord<String, String> record = StreamRecords.newRecord()

.in("my-stream")
.ofObject("my-value™);

redisTemplate()
.opsForStream()
.add(record); 1

List<ObjectRecord<String, String>> records = redisTemplate()

.opsForStream()
.read(String.class, StreamOffset.fromStart("my-stream"));

mong

java.lang.String

nmn mn

1 XADD my-stream * "_class _raw" "my-value"

ObjectRecord S pass through the very same serialization process as the all other records, thus the Record can also obtained using
the untyped read operation returning a MapRecord .

Complex Values

Adding a complex value to the stream can be done in 3 ways:

e Convert to simple value using eg. a String JSON representation.
e Serialize the value with a suitable RedisSerializer .

e Convert the value into a Map suitable for serialization using a HashMapper .

50 von 142

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

The first variant is the most straight forward one but neglects the field value capabilities offered by the stream structure, still the
values in the stream will be readable for other consumers. The 2nd option holds the same benefits as the first one, but may lead
to a very specific consumer limitations as the all consumers must implement the very same serialization mechanism. The

HashMapper approach is the a bit more complex one making use of the steams hash structure, but flattening the source. Still other
consumers remain able to read the records as long as suitable serializer combinations are chosen.

HashMappers convert the payload to a map with specific types. Make sure to use Hash-Key and Hash-Value serializers that
are capable of (de-)serializing the hash.

JAVA
ObjectRecord<String, User> record = StreamRecords.newRecord()

.in("user-logon")
.ofObject(new User("night", "angel"));

redisTemplate()
.opsForStream()
.add(record); 1

List<ObjectRecord<String, User>> records = redisTemplate()
.opsForStream()

.read(User.class, StreamOffset.fromStart("user-logon"));

1 XADD user-logon * "_class" "com.example.User" "firstname" "night" "lastname" "angel"

StreamOperations use by default ObjectHashMapper. You may provide a HashMapper suitable for your requirements when
obtaining streamoperations .

JAVA
redisTemplate()

.opsForStream(new Jackson2HashMapper(true))
.add(record); 1

51 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

1 XADD user-logon * "firstname" "night" "@class" "com.example.User" "lastname" "angel"

A StreamMessagelListenerContainer may not be aware of any @TypeAlias used on domain types as those need to be resolved through a
MappingContext . Make sure to initialize RedisMappingContext with a initialEntitySet .

JAV,
@Bean

RedisMappingContext redisMappingContext() {
RedisMappingContext ctx = new RedisMappingContext();
ctx.setInitialEntitySet(Collections.singleton(Person.class));
return ctx;

@Bean
RedisConverter redisConverter(RedisMappingContext mappingContext) {
return new MappingRedisConverter(mappingContext);

@Bean
ObjectHashMapper hashMapper(RedisConverter converter) {
return new ObjectHashMapper(converter);

@Bean
StreamMessagelListenerContainer streamMessagelListenerContainer(RedisConnectionFactory connectionFactory, ObjectHashMapper hashMapper) {
StreamMessagelListenerContainerOptions<String, ObjectRecord<String, Object>> options = StreamMessagelListenerContainerOptions.builder()
.objectMapper (hashMapper)
.build();

return StreamMessagelListenerContainer.create(connectionFactory, options);

52 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

10.12. Redis Transactions

Redis provides support for transactions through the multi, exec,and discard commands. These operations are available on
RedisTemplate . HOwever, RedisTemplate iS not guaranteed to run all the operations in the transaction with the same connection.

Spring Data Redis provides the sessionCallback interface for use when multiple operations need to be performed with the same
connection , such as when using Redis transactions.The following example uses the multi method:

JAVA
//execute a transaction

List<Object> txResults = redisTemplate.execute(new SessionCallback<List<Object>>() {
public List<Object> execute(RedisOperations operations) throws DataAccessException {
operations.multi();
operations.opsForSet().add("key", "valuel");

// This will contain the results of all operations in the transaction
return operations.exec();

}
})s
System.out.println("Number of items added to set: " + txResults.get(9));

RedisTemplate uses its value, hash key, and hash value serializers to deserialize all results of exec before returning. There is an
additional exec method that lets you pass a custom serializer for transaction results.

As of version 1.1, an important change has been made to the exec methods of RedisConnection and RedisTemplate .
Previously, these methods returned the results of transactions directly from the connectors. This means that the data types
often differed from those returned from the methods of RedisConnection . FOr example, zadd returns a boolean indicating
whether the element has been added to the sorted set. Most connectors return this value as a long, and Spring Data Redis
performs the conversion. Another common difference is that most connectors return a status reply (usually the string, ok)
for operations such as set . These replies are typically discarded by Spring Data Redis. Prior to 1.1, these conversions were
not performed on the results of exec . Also, results were not deserialized in RedisTemplate , SO they often included raw byte

53 von 142 22.11.2021. 15:58

Spring Data Redis

arrays. If this change breaks your application, set convertPipelineAndTxResults tO false ON your RedisConnectionFactory tO
disable this behavior.

10.12.1. @Transactional Support

By default, rRedisTemplate does not participate in managed Spring transactions. If you want RedisTemplate to make use of Redis
transaction when using @Transactional Or TransactionTemplate , you need to be explicitly enable transaction support for each
RedisTemplate by setting setEnableTransactionSupport(true) . Enabling transaction support binds RedisConnection to the current
transaction backed by a ThreadLocal . If the transaction finishes without errors, the Redis transaction gets commited with EXec,
otherwise rolled back with piscarp . Redis transactions are batch-oriented. Commands issued during an ongoing transaction are
queued and only applied when committing the transaction.

Spring Data Redis distinguishes between read-only and write commands in an ongoing transaction. Read-only commands, such as
KEYS , are piped to a fresh (non-thread-bound) RedisConnection to allow reads. Write commands are queued by RedisTemplate

and applied upon commit.
The following example shows how to configure transaction management:

Example 3. Configuration enabling Transaction Management

JAVA
@Configuration

@EnableTransactionManagement 1
public class RedisTxContextConfiguration {

@Bean

public StringRedisTemplate redisTemplate() {
StringRedisTemplate template = new StringRedisTemplate(redisConnectionFactory());
// explicitly enable transaction support
template.setEnableTransactionSupport(true); 2
return template;

}

54 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

@Bean
public RedisConnectionFactory redisConnectionFactory() {
// jedis || Lettuce

}

@Bean
public PlatformTransactionManager transactionManager() throws SQLException {
return new DataSourceTransactionManager(dataSource()); 3

}

@Bean

public DataSource dataSource() throws SQLException {
/..

}

1 Configures a Spring Context to enable declarative transaction management.
2 Configures RedisTemplate to participate in transactions by binding connections to the current thread.

3 Transaction management requires a PlatformTransactionManager .
Spring Data Redis does not ship with a platformTransactionManager implementation.
Assuming your application uses JDBC, Spring Data Redis can participate in transactions by using existing transaction
managers.

The following examples each demonstrate a usage constraint:

Example 4. Usage Constraints

JAVA
// must be performed on thread-bound connection

template.opsForValue().set("thingl", "thing2");

// read operation must be run on a free (not transaction-aware) connection
template.keys("*");

55 von 142 22.11.2021. 15:58

Spring Data Redis

56 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

// returns null as values set within a transaction are not visible
template.opsForValue().get("thingl");

10.13. Pipelining

Redis provides support for pipelining, which involves sending multiple commands to the server without waiting for the replies and
then reading the replies in a single step. Pipelining can improve performance when you need to send several commands in a row,
such as adding many elements to the same List.

Spring Data Redis provides several RedisTemplate methods for running commands in a pipeline. If you do not care about the
results of the pipelined operations, you can use the standard execute method, passing true for the pipeline argument. The
executePipelined methods run the provided Rediscallback Or SessionCallback in a pipeline and return the results, as shown in
the following example:

JAVA
//pop a specified number of items from a queue

List<Object> results = stringRedisTemplate.executePipelined(
new RedisCallback<Object>() {
public Object doInRedis(RedisConnection connection) throws DataAccessException {
StringRedisConnection stringRedisConn = (StringRedisConnection)connection;
for(int i=0; i< batchSize; i++) {
stringRedisConn.rPop("myqueue");
}
return null;
}
})s

The preceding example runs a bulk right pop of items from a queue in a pipeline. The results List contains all of the popped
items. RedisTemplate uses its value, hash key, and hash value serializers to deserialize all results before returning, so the returned
items in the preceding example are Strings. There are additional executePipelined methods that let you pass a custom serializer
for pipelined results.

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Note that the value returned from the Rediscallback is required to be null, as this value is discarded in favor of returning the
results of the pipelined commands.

The Lettuce driver supports fine grained flush control that allows to either flush commands as they appear, buffer or send
them at connection close.

JAVA
LettuceConnectionFactory factory = // ...

factory.setPipeliningFlushPolicy(PipeliningFlushPolicy.buffered(3)); 1

1 Buffer locally and flush after every 3rd command.

As of version 1.1, an important change has been made to the exec methods of RedisConnection and RedisTemplate .
Previously, these methods returned the results of transactions directly from the connectors. This means that the data types
often differed from those returned from the methods of RedisConnection . For example, zAdd returns a boolean indicating
whether the element has been added to the sorted set. Most connectors return this value as a long, and Spring Data Redis
performs the conversion. Another common difference is that most connectors return a status reply (usually the string, ok)
for operations such as set . These replies are typically discarded by Spring Data Redis. Prior to 1.1, these conversions were
not performed on the results of exec . Also, results were not deserialized in RedisTemplate , SO they often included raw byte
arrays. If this change breaks your application, set convertPipelineAndTxResults tO false ON Yyour RedisConnectionFactory tO
disable this behavior.

10.14. Redis Scripting

Redis versions 2.6 and higher provide support for running Lua scripts through the eval and evalsha commands. Spring Data Redis

57 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

provides a high-level abstraction for running scripts that handles serialization and automatically uses the Redis script cache.

Scripts can be run by calling the execute methods of RedisTemplate and ReactiveRedisTemplate . Both use a configurable
ScriptExecutor (Or ReactiveScriptExecutor)to run the provided script. By default, the scriptExecutor (Or ReactiveScriptExecutor)
takes care of serializing the provided keys and arguments and deserializing the script result. This is done through the key and
value serializers of the template. There is an additional overload that lets you pass custom serializers for the script arguments and
the result.

The default scriptexecutor optimizes performance by retrieving the SHA1 of the script and attempting first to run evalsha , falling
back to eval if the scriptis not yet present in the Redis script cache.

The following example runs a common “check-and-set” scenario by using a Lua script. This is an ideal use case for a Redis script, as
it requires that running a set of commands atomically, and the behavior of one command is influenced by the result of another.

JAVA
@Bean

public RedisScript<Boolean> script() {

ScriptSource scriptSource = new ResourceScriptSource(new ClassPathResource("META-INF/scripts/checkandset.lua"));
return RedisScript.of(scriptSource, Boolean.class);

}

JAVA
public class Example {

@Autowired
RedisScript<Boolean> script;

public boolean checkAndSet(String expectedValue, String newValue) {
return redisTemplate.execute(script, singletonList("key"), asList(expectedValue, newValue));
}
}

LUA
-- checkandset. lua

58 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

local current = redis.call('GET', KEYS[1])
if current == ARGV[1]
then redis.call('SET', KEYS[1], ARGV[2])
return true
end
return false

The preceding code configures a Redisscript pointing to a file called checkandset.lua , which is expected to return a boolean

value. The script resultType should be one of Long, Boolean, List, or a deserialized value type. It can also be null if the script
returns a throw-away status (specifically, ok).

It is ideal to configure a single instance of DpefaultRedisScript in your application context to avoid re-calculation of the
script's SHAT on every script run.

The checkAndset method above then runs the scripts. Scripts can be run within a sessioncallback as part of a transaction or
pipeline. See “Redis Transactions” and “Pipelining” for more information.

The scripting support provided by Spring Data Redis also lets you schedule Redis scripts for periodic running by using the Spring
Task and Scheduler abstractions. See the Spring Framework documentation for more details.

10.14.1. Redis Cache

Changedin 2.0

Spring Redis provides an implementation for the Spring cache abstraction through the org.springframework.data.redis.cache
package. To use Redis as a backing implementation, add RedisCacheManager to your configuration, as follows:

59 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

JAVA
@Bean

public RedisCacheManager cacheManager(RedisConnectionFactory connectionFactory) {
return RedisCacheManager.create(connectionFactory);

RedisCacheManager behavior can be configured with RedisCacheManagerBuilder , letting you set the default RedisCacheConfiguration ,
transaction behavior, and predefined caches.

JAVA
RedisCacheManager cm = RedisCacheManager.builder(connectionFactory)

.cacheDefaults(defaultCacheConfig())

.withInitialCacheConfigurations(singletonMap("predefined", defaultCacheConfig().disableCachingNullValues()))
.transactionAware()

.build();

As shown in the preceding example, RediscCacheManager allows definition of configurations on a per-cache basis.

The behavior of RedisCache created with RedisCacheManager is defined with RedisCacheConfiguration . The configuration lets you

set key expiration times, prefixes, and RedisSerializer implementations for converting to and from the binary storage format, as
shown in the following example:

JAVA
RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig()

.entryTtl(Duration.ofSeconds(1))
.disableCachingNullValues();

RedisCacheManager defaults to a lock-free Rediscachewriter for reading and writing binary values. Lock-free caching improves
throughput. The lack of entry locking can lead to overlapping, non-atomic commands for the putifabsent and clean methods, as
those require multiple commands to be sent to Redis. The locking counterpart prevents command overlap by setting an explicit
lock key and checking against presence of this key, which leads to additional requests and potential command wait times.

Locking applies on the cache level, not per cache entry.

60 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

It is possible to opt in to the locking behavior as follows:

JAVA
RedisCacheManager cm = RedisCacheManager.build(RedisCacheWriter.lockingRedisCacheWriter(connectionFactory))

.cacheDefaults(defaultCacheConfig())

By default, any key for a cache entry gets prefixed with the actual cache name followed by two colons. This behavior can be
changed to a static as well as a computed prefix.

The following example shows how to set a static prefix:

JAVA
// static key prefix
RedisCacheConfiguration.defaultCacheConfig().prefixKeysWith("(< & °)");

The following example shows how to set a computed prefix:

// computed key prefix

RedisCacheConfiguration.defaultCacheConfig().computePrefixWith(cacheName -> ""_(»”)_/~" + cacheName);

The cache implementation defaults to use kevs and DeL to clear the cache. Keys can cause performance issues with large
keyspaces. Therefore, the default RedisCachewriter can be created with a Batchstrategy to switch toa scan -based batch
strategy. The scan strategy requires a batch size to avoid excessive Redis command roundtrips:

JAVA
RedisCacheManager cm = RedisCacheManager.build(RedisCacheWriter.nonLockingRedisCacheWriter(connectionFactory, BatchStrategies.scan(1

.cacheDefaults(defaultCacheConfig())

The keys batch strategy is fully supported using any driver and Redis operation mode (Standalone, Clustered). scan is fully
supported when using the Lettuce driver. Jedis supports scan only in non-clustered modes.

61 von 142 22.11.2021. 15:58

Spring Data Redis

62 von 142

The following table lists the default settings for RediscCacheManager :

Table 7. RedisCacheManager defaults

Setting

Cache Writer

Cache Configuration

Initial Caches

Transaction Aware

The following table lists the default settings for RedisCacheConfiguration :

Non-locking, kevys batch strategy

RedisCacheConfiguration#defaultConfiguration

Table 8. RedisCacheConfiguration defaults

Key Expiration
Cache null
Prefix Keys
Default Prefix
Key Serializer

Value Serializer

None

Yes

Yes

The actual cache name

StringRedisSerializer

JdkSerializationRedisSerializer

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

Key Expiration None
Conversion Service DefaultFormattingConversionservice with default cache key
converters

By default Rediscache , statistics are disabled. Use RedisCacheManagerBuilder.enableStatistics() to collect local hitsand
misses through RedisCachet#tgetStatistics() , returning a snapshot of the collected data.

10.15. Support Classes

Package org.springframework.data.redis.support offers various reusable components that rely on Redis as a backing store.
Currently, the package contains various JDK-based interface implementations on top of Redis, such as atomic counters and JDK

Collections.

The atomic counters make it easy to wrap Redis key incrementation while the collections allow easy management of Redis keys
with minimal storage exposure or APl leakage. In particular, the Redisset and Rediszset interfaces offer easy access to the set
operations supported by Redis, such as intersection and union . RedisList implementsthe List, Queue,and Deque contracts
(and their equivalent blocking siblings) on top of Redis, exposing the storage as a FIFO (First-In-First-Out), LIFO (Last-In-First-Out) or
capped collection with minimal configuration. The following example shows the configuration for a bean that uses a RedisList :

<?xml version="1.0" encoding="UTF-8"?> X
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:p="http://www.springframework.org/schema/p" xsi:schemalLocation="

http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="queue" class="org.springframework.data.redis.support.collections.DefaultRedisList">
<constructor-arg ref="redisTemplate"/>

63 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

<constructor-arg value="queue-key"/>
</bean>

</beans>

The following example shows a Java configuration example for a peque :

JAVA
public class AnotherExample {

// injected
private Deque<String> queue;

public void addTag(String tag) {
queue.push(tag);

¥
}

As shown in the preceding example, the consuming code is decoupled from the actual storage implementation. In fact, there is no
indication that Redis is used underneath. This makes moving from development to production environments transparent and
highly increases testability (the Redis implementation can be replaced with an in-memory one).

11. Reactive Redis support

This section covers reactive Redis support and how to get started. Reactive Redis support naturally has certain overlaps with
imperative Redis support.

11.1. Redis Requirements

Spring Data Redis currently integrates with Lettuce as the only reactive Java connector. Project Reactor is used as reactive
composition library.

64 von 142 22.11.2021. 15:58

Spring Data Redis

65 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

11.2. Connecting to Redis by Using a Reactive Driver

One of the first tasks when using Redis and Spring is to connect to the store through the loC container. To do that, a Java
connector (or binding) is required. No matter the library you choose, you must use the org.springframework.data.redis.connection
package and its ReactiveRedisConnection and ReactiveRedisConnectionFactory interfaces to work with and retrieve active

connections to Redis.

11.2.1. Redis Operation Modes

Redis can be run as a standalone server, with Redis Sentinel, or in Redis Cluster mode. Lettuce supports all of the previously
mentioned connection types.

11.2.2. ReactiveRedisConnection and ReactiveRedisConnectionFactory

ReactiveRedisConnection is the core of Redis communication, as it handles the communication with the Redis back-end. It also
automatically translates the underlying driver exceptions to Spring's consistent DAO exception hierarchy, so you can switch the
connectors without any code changes, as the operation semantics remain the same.

ReactiveRedisConnectionFactory creates active ReactiveRedisConnection instances. In addition, the factories act as
PersistenceExceptionTranslator instances, meaning that, once declared, they let you do transparent exception translation — for
example, exception translation through the use of the @repository annotation and AOP. For more information, see the dedicated
section in the Spring Framework documentation.

Depending on the underlying configuration, the factory can return a new connection or an existing connection (in case a pool
or shared native connection is used).

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

The easiest way to work with a ReactiveRedisConnectionFactory is to configure the appropriate connector through the loC

container and inject it into the using class.

11.2.3. Configuring a Lettuce Connector

Lettuce is supported by Spring Data Redis through the org.springframework.data.redis.connection.lettuce package.

You can set up ReactiveRedisConnectionFactory for Lettuce as follows:

JAVA

@Bean
public ReactiveRedisConnectionFactory connectionFactory() {
return new LettuceConnectionFactory("localhost", 6379);

}

The following example shows a more sophisticated configuration, including SSL and timeouts, that uses

LettuceClientConfigurationBuilder :

JAVA

@Bean
public ReactiveRedisConnectionFactory lettuceConnectionFactory() {

LettuceClientConfiguration clientConfig = LettuceClientConfiguration.builder()
.useSsl().and()
.commandTimeout (Duration.ofSeconds(2))
.shutdownTimeout(Duration.ZERO)
.build();

return new LettuceConnectionFactory(new RedisStandaloneConfiguration("localhost", 6379), clientConfig);

}

For more detailed client configuration tweaks, see LettuceClientConfiguration .

66 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

11.3. Working with Objects through ReactiveRedisTemplate

Most users are likely to use ReactiveRedisTemplate and its corresponding package, org.springframework.data.redis.core . Due to its
rich feature set, the template is, in fact, the central class of the Redis module. The template offers a high-level abstraction for
Redis interactions. While ReactiveRedisConnection offers low-level methods that accept and return binary values (ByteBuffer), the
template takes care of serialization and connection management, freeing you from dealing with such details.

Moreover, the template provides operation views (following the grouping from Redis command reference) that offer rich,
generified interfaces for working against a certain type as described in the following table:

Table 9. Operational views

Interface Description
Key Type Operations
ReactiveGeoOperations Redis geospatial operations such as GEOADD , GEORADIUS , and
others)
ReactiveHashOperations Redis hash operations

ReactiveHyperLoglLogOperations Redis HyperLoglLog operations such as (PFADD , PFCOUNT , and

others)
ReactiveListOperations Redis list operations
ReactiveSetOperations Redis set operations
ReactiveValueOperations Redis string (or value) operations

67 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Interface Description

ReactiveZSetOperations Redis zset (or sorted set) operations

Once configured, the template is thread-safe and can be reused across multiple instances.

ReactiveRedisTemplate USes a Java-based serializer for most of its operations. This means that any object written or read by the
template is serialized or deserialized through RedisElementWriter Or RedisElementReader . The serialization context is passed to the
template upon construction, and the Redis module offers several implementations available in the

org.springframework.data.redis.serializer package. See Serializers for more information.

The following example shows a ReactiveRedisTemplate being used to returna Mono :

. . JAVA
@Configuration

class RedisConfiguration {

@Bean
ReactiveRedisTemplate<String, String> reactiveRedisTemplate(ReactiveRedisConnectionFactory factory) {
return new ReactiveRedisTemplate<>(factory, RedisSerializationContext.string());
}
¥

JAVA
public class Example {

@Autowired
private ReactiveRedisTemplate<String, String> template;

public Mono<Long> addLink(String userId, URL url) {
return template.opsForList().leftPush(userId, url.toExternalForm());
}
}

68 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

11.4. String-focused Convenience Classes

Since it is quite common for keys and values stored in Redis to be a java.lang.string , the Redis module provides a String-based
extension to ReactiveRedisTemplate : ReactiveStringRedisTemplate . It is @ convenient one-stop solution for intensive string
operations. In addition to being bound to string keys, the template uses the String-based RedisSerializationContext , which
means the stored keys and values are human readable (assuming the same encoding is used in both Redis and your code). The
following example shows ReactiveStringRedisTemplate in use:

JAVA
@Configuration

class RedisConfiguration {

@Bean
ReactiveStringRedisTemplate reactiveRedisTemplate(ReactiveRedisConnectionFactory factory) {
return new ReactiveStringRedisTemplate<>(factory);

}
}

JAVA
public class Example {

@Autowired
private ReactiveStringRedisTemplate redisTemplate;

public Mono<Long> addLink(String userId, URL url) {
return redisTemplate.opsForList().leftPush(userId, url.toExternalForm());

}
}

11.5. Redis Messaging/PubSub

Spring Data provides dedicated messaging integration for Redis, very similar in functionality and naming to the JMS integration in
Spring Framework; in fact, users familiar with the JMS support in Spring should feel right at home.

69 von 142 22.11.2021. 15:58

Spring Data Redis

70 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Redis messaging can be roughly divided into two areas of functionality, namely the production or publication and consumption or
subscription of messages, hence the shortcut pubsub (Publish/Subscribe). The ReactiveRedisTemplate class is used for message
production. For asynchronous reception, Spring Data provides a dedicated message listener container that is used consume a
stream of messages. For the purpose of just subscribing ReactiveRedisTemplate offers stripped down alternatives to utilizing a

listener container.

The package org.springframework.data.redis.connection and org.springframework.data.redis.listener provide the core
functionality for using Redis messaging.

11.5.1. Sending/Publishing messages

To publish a message, one can use, as with the other operations, either the low-level ReactiveRedisConnection or the high-level
ReactiveRedisTemplate . Both entities offer a publish method that accepts as an argument the message that needs to be sent as
well as the destination channel. While ReactiveRedisConnection requires raw-data, the ReactiveRedisTemplate allow arbitrary
objects to be passed in as messages:

JAVA
// send message through ReactiveRedisConnection
ByteBuffer msg = ..
ByteBuffer channel =

Mono<Long> publish = con.publish(msg, channel);

// send message through ReactiveRedisTemplate
ReactiveRedisTemplate template = ..
Mono<Long> publish = template.convertAndSend("channel"”, "message");

11.5.2. Receiving/Subscribing for messages

On the receiving side, one can subscribe to one or multiple channels either by naming them directly or by using pattern matching.
The latter approach is quite useful as it not only allows multiple subscriptions to be created with one command but to also listen
on channels not yet created at subscription time (as long as they match the pattern).

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

At the low-level, ReactiveRedisConnection oOffers subscribe and psubscribe methods that map the Redis commands for
subscribing by channel respectively by pattern. Note that multiple channels or patterns can be used as arguments. To change a
subscription, simply query the channels and patterns of ReactiveSubscription .

Reactive subscription commands in Spring Data Redis are non-blocking and may end without emitting an element.

As mentioned above, once subscribed a connection starts waiting for messages. No other commands can be invoked on it except
for adding new subscriptions or modifying/canceling the existing ones. Commands other than subscribe , pSubscribe ,
unsubscribe , OF pUnsubscribe are illegal and will cause an exception.

In order to receive messages, one needs to obtain the message stream. Note that a subscription only publishes messages for
channels and patterns that are registered with that particular subscription. The message stream itself is a hot sequence that
produces elements without regard to demand. Make sure to register sufficient demand to not exhaust the message buffer.

Message Listener Containers

Spring Data offers ReactiveRedisMessagelListenerContainer Which does all the heavy lifting of conversion and subscription state
management on behalf of the user.

ReactiveRedisMessagelListenerContainer acts as a message listener container. It is used to receive messages from a Redis channel
and expose a stream of messages that emits channel messages with deserialization applied. It takes care of registering to receive
messages, resource acquisition and release, exception conversion and the like. This allows you as an application developer to
write the (possibly complex) business logic associated with receiving a message (and reacting to it), and delegates boilerplate Redis
infrastructure concerns to the framework. Message streams register a subscription in Redis upon publisher subscription and
unregister if the subscription gets canceled.

Furthermore, to minimize the application footprint, ReactiveRedisMessageListenerContainer allows one connection and one thread

71 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

to be shared by multiple listeners even though they do not share a subscription. Thus no matter how many listeners or channels
an application tracks, the runtime cost will remain the same through out its lifetime. Moreover, the container allows runtime
configuration changes so one can add or remove listeners while an application is running without the need for restart.
Additionally, the container uses a lazy subscription approach, using a ReactiveRedisConnection only when needed - if all the
listeners are unsubscribed, cleanup is automatically performed.

The message listener container itself does not require external threading resources. It uses the driver threads to publish
messages.

JAVA
ReactiveRedisConnectionFactory factory = ..

ReactiveRedisMessagelListenerContainer container = new ReactiveRedisMessagelistenerContainer(factory);

Flux<ChannelMessage<String, String>> stream = container.receive(ChannelTopic.of("my-channel™));

To await and ensure proper subscription, you can use the receiveLater method that returns a Mono<Flux<ChannelMessage>> . The
resulting Mono completes with an inner publisher as a result of completing the subscription to the given topics. By intercepting
onNext signals, you can synchronize server-side subscriptions.

JAVA
ReactiveRedisConnectionFactory factory = ..

ReactiveRedisMessagelListenerContainer container = new ReactiveRedisMessagelistenerContainer(factory);
Mono<Flux<ChannelMessage<String, String>>> stream = container.receivelLater(ChannelTopic.of("my-channel™));
stream.doOnNext(inner -> // notification hook when Redis subscriptions are synchronized with the server)

.flatMapMany(Function.identity())

oy

Subscribing via template API

As mentioned above you can directly use ReactiveRedisTemplate to subscribe to channels/ patterns. This approach offers a
straight forward, though limited solution as you lose the option to add subscriptions after the initial ones. Nevertheless you still

72 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

can control the message stream via the returned Flux using eg. take(buration) . When done reading, on error or cancellation all
bound resources are freed again.

JAVA
redisTemplate.listenToChannel("channell"”, "channel2").doOnNext(msg -> {

// message processing ...
}) .subscribe();

11.6. Reactive Scripting

You can run Redis scripts with the reactive infrastructure by using the ReactivescriptExecutor , Which is best accessed through

ReactiveRedisTemplate .

JAVA
public class Example {

@Autowired
private ReactiveRedisTemplate<String, String> template;

public Flux<Long> theAnswerToLife() {
DefaultRedisScript<Long> script = new DefaultRedisScript<>();
script.setLocation(new ClassPathResource("META-INF/scripts/42.1ua"));

script.setResultType(Long.class);

return reactiveTemplate.execute(script);

See to the scripting section for more details on scripting commands.

12. Redis Cluster

73 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Working with Redis Cluster requires Redis Server version 3.0+. See the Cluster Tutorial for more information.

12.1. Enabling Redis Cluster

Cluster support is based on the same building blocks as non-clustered communication. RedisClusterConnection , an extension to
RedisConnection , handles the communication with the Redis Cluster and translates errors into the Spring DAO exception
hierarchy. RedisClusterConnection instances are created with the RedisConnectionFactory , which has to be set up with the
associated RedisClusterConfiguration, as shown in the following example:

Example 5. Sample RedisConnectionFactory Configuration for Redis Cluster

JAVA
@Component

@ConfigurationProperties(prefix = "spring.redis.cluster")
public class ClusterConfigurationProperties {

/*
* spring.redis.cluster.nodes[@]

127.0.0.1:7379
127.0.0.1:7380

* spring.redis.cluster.nodes[1]
*

*/

List<String> nodes;

/**
* Get initial collection of known cluster nodes in format {@code host:port}.
*

* @return
*/
public List<String> getNodes() {
return nodes;

public void setNodes(List<String> nodes) {
this.nodes = nodes;

74 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

@Configuration
public class AppConfig {

/**
* Type safe representation of application.properties
*/
@Autowired ClusterConfigurationProperties clusterProperties;

public @Bean RedisConnectionFactory connectionFactory() {

return new JedisConnectionFactory(
new RedisClusterConfiguration(clusterProperties.getNodes()));

RedisClusterConfiguration can also be defined through propertySource and has the following properties:

Configuration Properties
e spring.redis.cluster.nodes : Comma-delimited list of host:port pairs.

e spring.redis.cluster.max-redirects : Number of allowed cluster redirections.

The initial configuration points driver libraries to an initial set of cluster nodes. Changes resulting from live cluster
reconfiguration are kept only in the native driver and are not written back to the configuration.

12.2. Working With Redis Cluster Connection

75 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

As mentioned earlier, Redis Cluster behaves differently from single-node Redis or even a Sentinel-monitored master-replica
environment. This is because the automatic sharding maps a key to one of 16384 slots, which are distributed across the nodes.
Therefore, commands that involve more than one key must assert all keys map to the exact same slot to avoid cross-slot errors. A
single cluster node serves only a dedicated set of keys. Commands issued against one particular server return results only for
those keys served by that server. As a simple example, consider the keys command. When issued to a server in a cluster
environment, it returns only the keys served by the node the request is sent to and not necessarily all keys within the cluster. So,
to get all keys in a cluster environment, you must read the keys from all the known master nodes.

While redirects for specific keys to the corresponding slot-serving node are handled by the driver libraries, higher-level functions,
such as collecting information across nodes or sending commands to all nodes in the cluster, are covered by

RedisClusterConnection . Picking up the keys example from earlier, this means that the keys(pattern) method picks up every
master node in the cluster and simultaneously runs the keys command on every master node while picking up the results and
returning the cumulated set of keys. To just request the keys of a single node RedisClusterConnection provides overloads for those
methods (for example, keys(node, pattern)).

A RedisClusterNode can be obtained from RedisClusterConnection.clusterGetNodes Or it can be constructed by using either the host
and the port or the node Id.

The following example shows a set of commands being run across the cluster:

Example 6. Sample of Running Commands Across the Cluster

TEXT
redis-cli@127.0.0.1:7379 > cluster nodes

6b38bb... 127.0.0.1:7379 master - @ © 25 connected 0-5460

7bb78c... 127.0.0.1:7380 master - 0@ 1449730618304 2 connected 5461-10922
164888... 127.0.0.1:7381 master - © 1449730618304 3 connected 10923-16383
b8b5ee... 127.0.0.1:7382 slave 6b38bb... © 1449730618304 25 connected

A W N =

JAVA
RedisClusterConnection connection = connectionFactory.getClusterConnnection();

76 von 142 22.11.2021. 15:58

Spring Data Redis

77 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

connection.set("thingl", value); 5
connection.set("thing2", value); 6
connection.keys("*"); 7
connection.keys(NODE_7379, "*"); 8
connection.keys(NODE_7380, "*"); 9
connection.keys(NODE_7381, "*"); 10
connection.keys(NODE_7382, "*"); 11

1 Master node serving slots 0 to 5460 replicated to replica at 7382
2 Master node serving slots 5461 to 10922

3 Master node serving slots 10923 to 16383

4 Replica node holding replicants of the master at 7379

5 Request routed to node at 7381 serving slot 12182

6 Request routed to node at 7379 serving slot 5061

7 Request routed to nodes at 7379, 7380, 7381 — [thing1, thing2]
8 Request routed to node at 7379 — [thing2]

9 Request routed to node at 7380 — []

10 Request routed to node at 7381 — [thing1]

11 Request routed to node at 7382 — [thing2]

When all keys map to the same slot, the native driver library automatically serves cross-slot requests, such as MGeT . However,
once this is not the case, RedisClusterConnection runs multiple parallel et commands against the slot-serving nodes and again
returns an accumulated result. This is less performant than the single-slot approach and, therefore, should be used with care. If in
doubt, consider pinning keys to the same slot by providing a prefix in curly brackets, such as {my-prefix}.thingl and {my-

22.11.2021

. 15:58

Spring Data Redis

prefix}.thing2 , which will both map to the same slot number. The following example shows cross-slot request handling:

Example 7. Sample of Cross-Slot Request Handling

redis-cli@127.0.0.1:7379 > cluster nodes

6b38bb. ..
7bb...

127.0.0.1:7379 master - @ @ 25 connected 0-5460

RedisClusterConnection connection = connectionFactory.getClusterConnnection();

connection.
connection.
connection.

connection

connection

set("thingl", value); // slot:
set("{thingl}.thing2", value); // slot:
set("thing2", value); // slot:
.mGet("thingl", "{thingl}.thing2");

.mGet("thingl", "thing2");

1 Same Configuration as in the sample before.

12182
12182
5461

2 Keys map to same slot — 127.0.0.1:7381 MGET thing1 {thing1}.thing2

3 Keys map to different slots and get split up into single slot ones routed to the according nodes

— 127.0.0.1:7379 GET thing2

— 127.0.0.1:7381 GET thing1

TEXT

JAVA

The preceding examples demonstrate the general strategy followed by Spring Data Redis. Be aware that some operations

78 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

might require loading huge amounts of data into memory to compute the desired command. Additionally, not all cross-slot
requests can safely be ported to multiple single slot requests and error if misused (for example, PFCOUNT).

12.3. Working with RedisTemplate and ClusterOperations

See the Working with Objects through RedisTemplate section for information about the general purpose, configuration, and usage

of RedisTemplate .

Be careful when setting up RedisTemplatettkeySerializer using any of the JSON Redisserializers , as changing JSON structure
has immediate influence on hash slot calculation.

RedisTemplate provides access to cluster-specific operations through the clusteroperations interface, which can be obtained
from RedisTemplate.opsForCluster() . This lets you explicitly run commands on a single node within the cluster while retaining the
serialization and deserialization features configured for the template. It also provides administrative commands (such as cLUSTER
MEET) or more high-level operations (for example, resharding).

The following example shows how to access RedisClusterConnection With RedisTemplate :

Example 8. Accessing RedisClusterConnection With RedisTemplate

TEXT
ClusterOperations clusterOps = redisTemplate.opsForCluster();

clusterOps.shutdown(NODE_7379); 1

1 Shut down node at 7379 and cross fingers there is a replica in place that can take over.

79 von 142

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

13. Redis Repositories

Working with Redis Repositories lets you seamlessly convert and store domain objects in Redis Hashes, apply custom mapping
strategies, and use secondary indexes.

Redis Repositories require at least Redis Server version 2.8.0 and do not work with transactions. Make sure to use a
RedisTemplate with disabled transaction support.

13.1. Usage

Spring Data Redis lets you easily implement domain entities, as shown in the following example:

Example 9. Sample Person Entity

JAVA
@RedisHash("people")

public class Person {

@Id String id;

String firstname;
String lastname;
Address address;

We have a pretty simple domain object here. Note that it has a @RedisHash annotation on its type and a property named id that
is annotated with org.springframework.data.annotation.Id . Those two items are responsible for creating the actual key used to
persist the hash.

80 von 142

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Properties annotated with @1d as well as those named id are considered as the identifier properties. Those with the
annotation are favored over others.

To now actually have a component responsible for storage and retrieval, we need to define a repository interface, as shown in the
following example:

Example 10. Basic Repository Interface To Persist Person Entities

JAVA
public interface PersonRepository extends CrudRepository<Person, String> {

As our repository extends crudRepository , it provides basic CRUD and finder operations. The thing we need in between to glue
things together is the corresponding Spring configuration, shown in the following example:

Example 11. JavaConfig for Redis Repositories

JAVA
@Configuration

@EnableRedisRepositories
public class ApplicationConfig {

@Bean
public RedisConnectionFactory connectionFactory() {
return new JedisConnectionFactory();

}

@Bean
public RedisTemplate<?, ?> redisTemplate(RedisConnectionFactory redisConnectionFactory) {

81 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

RedisTemplate<byte[], byte[]> template = new RedisTemplate<byte[], byte[]>();
template.setConnectionFactory(redisConnectionFactory);
return template;

}
}

Given the preceding setup, we can inject personRepository into our components, as shown in the following example:

Example 12. Access to Person Entities

JAVA
@Autowired PersonRepository repo;

public void basicCrudOperations() {

Person rand = new Person("rand”, "al'thor");
rand.setAddress(new Address("emond's field", "andor"));

repo.save(rand); 1
repo.findOne(rand.getId()); 2
repo.count(); 3
repo.delete(rand); 4

1 Generates a new id if the currentvalueis null orreuses an already set id value and stores properties of type
Person inside the Redis Hash with a key that has a pattern of keyspace:id —in this case, it might be
people:5d67b7el-8640-4475-beeb-c666fab4coes .

2 Usesthe provided id to retrieve the object stored at keyspace:id .

3 Counts the total number of entities available within the keyspace, people , defined by @RedisHash on Person .

82 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

4 Removes the key for the given object from Redis.

13.2. Object Mapping Fundamentals

This section covers the fundamentals of Spring Data object mapping, object creation, field and property access, mutability and
immutability. Note, that this section only applies to Spring Data modules that do not use the object mapping of the underlying
data store (like JPA). Also be sure to consult the store-specific sections for store-specific object mapping, like indexes, customizing
column or field names or the like.

Core responsibility of the Spring Data object mapping is to create instances of domain objects and map the store-native data
structures onto those. This means we need two fundamental steps:

1. Instance creation by using one of the constructors exposed.

2. Instance population to materialize all exposed properties.

13.2.1. Object creation

Spring Data automatically tries to detect a persistent entity’s constructor to be used to materialize objects of that type. The
resolution algorithm works as follows:

1. If there is a single constructor, it is used.

2. If there are multiple constructors and exactly one is annotated with @persistenceConstructor , it is used.

3. If there's a no-argument constructor, it is used. Other constructors will be ignored.
The value resolution assumes constructor argument names to match the property names of the entity, i.e. the resolution will be

performed as if the property was to be populated, including all customizations in mapping (different datastore column or field
name etc.). This also requires either parameter names information available in the class file or an @constructorProperties

83 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

annotation being present on the constructor.

The value resolution can be customized by using Spring Framework’s @value value annotation using a store-specific SpEL
expression. Please consult the section on store specific mappings for further details.

Object creation internals

To avoid the overhead of reflection, Spring Data object creation uses a factory class generated at runtime by default, which
will call the domain classes constructor directly. l.e. for this example type:

JAVA
class Person {

Person(String firstname, String lastname) { .. }

}

we will create a factory class semantically equivalent to this one at runtime:

JAVA
class PersonObjectInstantiator implements ObjectInstantiator {

Object newInstance(Object... args) {
return new Person((String) args[@], (String) args[1]);

¥
}

This gives us a roundabout 10% performance boost over reflection. For the domain class to be eligible for such optimization,
it needs to adhere to a set of constraints:

e it must not be a private class
e it must not be a non-static inner class

e it must not be a CGLib proxy class

84 von 142 22.11.2021. 15:58

Spring Data Redis

85 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

e the constructor to be used by Spring Data must not be private

If any of these criteria match, Spring Data will fall back to entity instantiation via reflection.

13.2.2. Property population

Once an instance of the entity has been created, Spring Data populates all remaining persistent properties of that class. Unless
already populated by the entity’'s constructor (i.e. consumed through its constructor argument list), the identifier property will be
populated first to allow the resolution of cyclic object references. After that, all non-transient properties that have not already
been populated by the constructor are set on the entity instance. For that we use the following algorithm:

1. If the property is immutable but exposes a with.. method (see below), we use the with.. method to create a new entity
instance with the new property value.

2. If property access (i.e. access through getters and setters) is defined, we're invoking the setter method.

3. If the property is mutable we set the field directly.

4. If the property is immutable we're using the constructor to be used by persistence operations (see Object creation) to create a
copy of the instance.

5. By default, we set the field value directly.

Property population internals

Similarly to our optimizations in object construction we also use Spring Data runtime generated accessor classes to interact
with the entity instance.

JAVA
class Person {

private final Long id;
private String firstname;

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

private @AccessType(Type.PROPERTY) String lastname;

Person() {
this.id = null;
}

Person(Long id, String firstname, String lastname) {
// Field assignments

}

Person withId(Long id) {
return new Person(id, this.firstname, this.lastame);

}

void setLastname(String lastname) {
this.lastname = lastname;

}
}

Example 13. A generated Property Accessor

JAVA
class PersonPropertyAccessor implements PersistentPropertyAccessor {

private static final MethodHandle firstname; 2

private Person person; 1

public void setProperty(PersistentProperty property, Object value) {
String name = property.getName();

if ("firstname".equals(name)) {

firstname.invoke(person, (String) value); 2
} else if ("id".equals(name)) {

this.person = person.withId((Long) value); 3
} else if ("lastname".equals(name)) {

this.person.setLastname((String) value); 4
}

86 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

1 PropertyAccessor’s hold a mutable instance of the underlying object. This is, to enable mutations of otherwise
immutable properties.

2 By default, Spring Data uses field-access to read and write property values. As per visibility rules of private
fields, MethodHandles are used to interact with fields.

3 The class exposes a withid(..) method that's used to set the identifier, e.g. when an instance is inserted into the
datastore and an identifier has been generated. Calling withId(..) creates a new Pperson object. All subsequent
mutations will take place in the new instance leaving the previous untouched.

4 Using property-access allows direct method invocations without using MethodHandles .

This gives us a roundabout 25% performance boost over reflection. For the domain class to be eligible for such optimization,
it needs to adhere to a set of constraints:

e Types must not reside in the default or under the java package.
e Types and their constructors must be public
e Types that are inner classes must be static .

e The used Java Runtime must allow for declaring classes in the originating ClassLoader . Java 9 and newer impose certain
limitations.

By default, Spring Data attempts to use generated property accessors and falls back to reflection-based ones if a limitation is
detected.

Let's have a look at the following entity:

Example 14. A sample entity

87 von 142

22.11.2021. 15:58

Spring Data Redis

88 von 142

1

class Person {

private final @Id Long id;

private final String firstname, lastname;
private final LocalDate birthday;

private final int age;

private String comment;

private @AccessType(Type.PROPERTY) String remarks;

static Person of(String firstname, String lastname, LocalDate birthday) { 6

return new Person(null, firstname, lastname, birthday,
Period.between(birthday, LocalDate.now()).getYears());

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

JAVA

Person(Long id, String firstname, String lastname, LocalDate birthday, int age) { 6

this.id = id;

this.firstname = firstname;

this.lastname
this.birthday

this.age = age;

lastname;
birthday;

Person withId(Long id) {
return new Person(id, this.firstname, this.lastname, this.birthday, this.age);

}

void setRemarks(String remarks) {

this.remarks = remarks;

}
}

The identifier property is final but set to null in the constructor.

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

The class exposes a withid(..) method that's used to set the identifier, e.g. when an instance is inserted into the datastore
and an identifier has been generated.

The original person instance stays unchanged as a new one is created.

The same pattern is usually applied for other properties that are store managed but might have to be changed for
persistence operations.

The wither method is optional as the persistence constructor (see 6) is effectively a copy constructor and setting the
property will be translated into creating a fresh instance with the new identifier value applied.

2 The firstname and lastname properties are ordinary immutable properties potentially exposed through getters.

3 The age property is an immutable but derived one from the birthday property.
With the design shown, the database value will trump the defaulting as Spring Data uses the only declared constructor.
Even if the intent is that the calculation should be preferred, it's important that this constructor also takes age as parameter
(to potentially ignore it) as otherwise the property population step will attempt to set the age field and fail due to it being
immutable and no with.. method being present.

4 The comment propertyis mutable is populated by setting its field directly.

5 The remarks properties are mutable and populated by setting the comment field directly or by invoking the setter method
for

6 The class exposes a factory method and a constructor for object creation.
The core idea here is to use factory methods instead of additional constructors to avoid the need for constructor
disambiguation through @persistenceConstructor .
Instead, defaulting of properties is handled within the factory method.

13.2.3. General recommendations

¢ Try to stick to immutable objects— Immutable objects are straightforward to create as materializing an object is then a matter
of calling its constructor only. Also, this avoids your domain objects to be littered with setter methods that allow client code to
manipulate the objects state. If you need those, prefer to make them package protected so that they can only be invoked by a
limited amount of co-located types. Constructor-only materialization is up to 30% faster than properties population.

89 von 142 22.11.2021. 15:58

Spring Data Redis

90 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Provide an all-args constructor— Even if you cannot or don't want to model your entities as immutable values, there's still
value in providing a constructor that takes all properties of the entity as arguments, including the mutable ones, as this allows
the object mapping to skip the property population for optimal performance.

Use factory methods instead of overloaded constructors to avoid @persistenceconstructor — With an all-argument constructor
needed for optimal performance, we usually want to expose more application use case specific constructors that omit things
like auto-generated identifiers etc. It's an established pattern to rather use static factory methods to expose these variants of
the all-args constructor.

Make sure you adhere to the constraints that allow the generated instantiator and property accessor classes to be used—

For identifiers to be generated, still use a final field in combination with an all-arguments persistence constructor (preferred) or
a with.. method—

Use Lombok to avoid boilerplate code— As persistence operations usually require a constructor taking all arguments, their
declaration becomes a tedious repetition of boilerplate parameter to field assignments that can best be avoided by using
Lombok's @AllArgsConstructor .

Overriding Properties

Java's allows a flexible design of domain classes where a subclass could define a property that is already declared with the same
name in its superclass. Consider the following example:

JAVA
public class SuperType {

private CharSequence field;

public SuperType(CharSequence field) {
this.field = field;
}

public CharSequence getField() {
return this.field;

22.11.2021. 15:58

Spring Data Redis

91 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

public void setField(CharSequence field) {
this.field = field;

public class SubType extends SuperType {
private String field;

public SubType(String field) {
super(field);
this.field = field;

@Override
public String getField() {
return this.field;

}

public void setField(String field) {
this.field = field;

// optional
super.setField(field);

Both classes define a field using assignable types. subType however shadows superType.field . Depending on the class design,
using the constructor could be the only default approach to set superType.field . Alternatively, calling super.setfField(..) inthe
setter could set the field in superType . All these mechanisms create conflicts to some degree because the properties share the
same name yet might represent two distinct values. Spring Data skips super-type properties if types are not assignable. That is,
the type of the overridden property must be assignable to its super-type property type to be registered as override, otherwise the
super-type property is considered transient. We generally recommend using distinct property names.

22.11.2021. 15:58

Spring Data Redis

Spring Data modules generally support overridden properties holding different values. From a programming model perspective

there are a few things to consider:

1. Which property should be persisted (default to all declared properties)? You can exclude properties by annotating these with

@Transient .

2. How to represent properties in your data store? Using the same field/column name for different values typically leads to
corrupt data so you should annotate least one of the properties using an explicit field/column name.

3. Using @AccessType(PROPERTY) cannot be used as the super-property cannot be generally set without making any further
assumptions of the setter implementation.

13.2.4. Kotlin support

Spring Data adapts specifics of Kotlin to allow object creation and mutation.

Kotlin object creation

Kotlin classes are supported to be instantiated , all classes are immutable by default and require explicit property declarations to
define mutable properties. Consider the following data class Person :

KOTLIN
data class Person(val id: String, val name: String)

The class above compiles to a typical class with an explicit constructor.We can customize this class by adding another constructor
and annotate it with @persistenceConstructor to indicate a constructor preference:

KOTLIN
data class Person(var id: String, val name: String) {

92 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

93 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

@PersistenceConstructor
constructor(id: String) : this(id, "unknown™)

Kotlin supports parameter optionality by allowing default values to be used if a parameter is not provided. When Spring Data
detects a constructor with parameter defaulting, then it leaves these parameters absent if the data store does not provide a value
(or simply returns null) so Kotlin can apply parameter defaulting.Consider the following class that applies parameter defaulting

for name

KOTLIN
data class Person(var id: String, val name: String = "unknown")

Every time the name parameter is either not part of the result or its value is null, then the name defaults to unknown .

Property population of Kotlin data classes

In Kotlin, all classes are immutable by default and require explicit property declarations to define mutable properties. Consider
the following data class Person :

KOTLIN
data class Person(val id: String, val name: String)

This class is effectively immutable. It allows creating new instances as Kotlin generates a copy(..) method that creates new object

instances copying all property values from the existing object and applying property values provided as arguments to the method.

Kotlin Overriding Properties

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Kotlin allows declaring property overrides to alter properties in subclasses.
KOTLIN
open class SuperType(open var field: Int)

class SubType(override var field: Int = 1) :
SuperType(field) {

Such an arrangement renders two properties with the name field . Kotlin generates property accessors (getters and setters) for
each property in each class. Effectively, the code looks like as follows:

JAVA
public class SuperType {

private int field;

public SuperType(int field) {

this.field = field;

public int getField() {
return this.field;

public void setField(int field) {
this.field = field;

public final class SubType extends SuperType {
private int field;

public SubType(int field) {
super(field);

94 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

this.field = field;
}

public int getField() {
return this.field;

}

public void setField(int field) {
this.field = field;
}

Getters and setters on subType setonly SubType.field and not SuperType.field . In such an arrangement, using the constructor is
the only default approach to set superType.field . Adding a method to SubType tO set SuperType.field via this.SuperType.field =
. is possible but falls outside of supported conventions. Property overrides create conflicts to some degree because the
properties share the same name yet might represent two distinct values. We generally recommend using distinct property names.

Spring Data modules generally support overridden properties holding different values. From a programming model perspective

there are a few things to consider:

1. Which property should be persisted (default to all declared properties)? You can exclude properties by annotating these with

@Transient .

2. How to represent properties in your data store? Using the same field/column name for different values typically leads to
corrupt data so you should annotate least one of the properties using an explicit field/column name.

3. Using @AccessType(PROPERTY) cannot be used as the super-property cannot be set.

13.3. Object-to-Hash Mapping

The Redis Repository support persists Objects to Hashes. This requires an Object-to-Hash conversion which is done by a
RedisConverter . The default implementation uses converter for mapping property values to and from Redis native byte[] .

95 von 142

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Given the person type from the previous sections, the default mapping looks like the following:

TEXT

_class = org.example.Person 1
id = e2c7dcee-b8cd-4424-883e-736ce564363e
firstname = rand 2
lastname = al’thor

address.city = emond's field 3

address.country = andor

1 The _class attribute is included on the root level as well as on any nested interface or abstract types.
2 Simple property values are mapped by path.

3 Properties of complex types are mapped by their dot path.

The following table describes the default mapping rules:

Table 10. Default Mapping Rules

Type Sample Mapped Value

Simple Type String firstname = "rand"; firstname = "rand"

(for example,

String)

Byte array byte[] image = "rand".getBytes(); image = "rand"

(byte[])

Complex Type Address address = new address.city = "emond'’s field"
(for example, Address("emond’s field");

96 von 142 22.11.2021. 15:58

Spring Data Redis

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Type Sample Mapped Value

Address)

List List<String> nicknames = asList("dragon nicknames.[0] = "dragon reborn",
of Simple Type reborn", "lews therin"); nicknames.[1] = "lews therin"
Map Map<String, String> atts = asMap({"eye- atts.[eye-color] = "grey",

of Simple Type

color”, "grey"}, {"...

atts.[hair-color] ="...

List List<Address> addresses = asList(new addresses.[0].city = "emond's field",

of Complex Type Address("em... addresses.[1].city ="...

Map Map<String, Address> addresses = addresses.[home].city = "emond's field",
of Complex Type asMap({"home", new Address("em... addresses.[work].city = "...

Due to the flat representation structure, Map keys need to be simple types, such as string or Number .

Mapping behavior can be customized by registering the corresponding Converter in RedisCustomConversions . Those converters
can take care of converting from and to a single byte[] as well as Map<string,byte[]> . The first one is suitable for (for example)
converting a complex type to (for example) a binary JSON representation that still uses the default mappings hash structure. The
second option offers full control over the resulting hash.

Writing objects to a Redis hash deletes the content from the hash and re-creates the whole hash, so data that has not been
mapped is lost.

97 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

The following example shows two sample byte array converters:

Example 15. Sample byte[] Converters

JAVA
@WritingConverter

public class AddressToBytesConverter implements Converter<Address, byte[]> {
private final Jackson2J]sonRedisSerializer<Address> serializer;
public AddressToBytesConverter() {

serializer = new Jackson2JsonRedisSerializer<Address>(Address.class);
serializer.setObjectMapper(new ObjectMapper());

}

@Override
public byte[] convert(Address value) {
return serializer.serialize(value);
}
¥

@ReadingConverter
public class BytesToAddressConverter implements Converter<byte[], Address> {

private final Jackson2J]sonRedisSerializer<Address> serializer;
public BytesToAddressConverter() {

serializer = new Jackson2JsonRedisSerializer<Address>(Address.class);
serializer.setObjectMapper(new ObjectMapper());

}

@Override
public Address convert(byte[] value) {
return serializer.deserialize(value);
}
}

08 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Using the preceding byte array converter produces output similar to the following:

TEXT
_class = org.example.Person
id = e2c7dcee-b8cd-4424-883e-736ce564363e
firstname = rand
lastname = al’thor
address = { city : "emond's field", country : "andor" }
The following example shows two examples of Map converters:
Example 16. Sample Map<String,byte[]> Converters
JAVA

@WritingConverter
public class AddressToMapConverter implements Converter<Address, Map<String,byte[]>> {

@Override
public Map<String,byte[]> convert(Address source) {
return singletonMap(“ciudad", source.getCity().getBytes());
}
}

@ReadingConverter
public class MapToAddressConverter implements Converter<Map<String, byte[]>, Address> {

@Override
public Address convert(Map<String,byte[]> source) {
return new Address(new String(source.get("ciudad")));
¥
¥

Using the preceding Map converter produces output similar to the following:

99 von 142 22.11.2021. 15:58

Spring Data Redis

TEXT

_class = org.example.Person

id = e2c7dcee-b8cd-4424-883e-736ce564363e
firstname = rand

lastname = al’thor

ciudad = "emond's field"

Custom conversions have no effect on index resolution. Secondary Indexes are still created, even for custom converted

types.

13.3.1. Customizing Type Mapping

If you want to avoid writing the entire Java class name as type information and would rather like to use a key, you can use the
@TypeAlias annotation on the entity class being persisted. If you need to customize the mapping even more, look at the
TypeInformationMapper interface. An instance of that interface can be configured at the DefaultRedisTypeMapper , Which can be

configured ON MappingRedisConverter .
The following example shows how to define a type alias for an entity:
Example 17. Defining @Typealias for an entity

JAVA
@TypeAlias("pers")
class Person {

}

100 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

The resulting document contains pers asthe valueina _class field.

Configuring Custom Type Mapping

The following example demonstrates how to configure a custom RedisTypeMapper iN MappingRedisConverter :

Example 18. Configuring a custom RedisTypeMapper Via Spring Java Config

JAVA
class CustomRedisTypeMapper extends DefaultRedisTypeMapper {
//implement custom type mapping here
}
JAVA
@Configuration

class SampleRedisConfiguration {

@Bean
public MappingRedisConverter redisConverter(RedisMappingContext mappingContext,
RedisCustomConversions customConversions, ReferenceResolver referenceResolver) {

MappingRedisConverter mappingRedisConverter = new MappingRedisConverter(mappingContext, null, referenceResolver,
customTypeMapper());

mappingRedisConverter.setCustomConversions(customConversions);

return mappingRedisConverter;

}

@Bean
public RedisTypeMapper customTypeMapper() {
return new CustomRedisTypeMapper();
}
}

101 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

13.4. Keyspaces

Keyspaces define prefixes used to create the actual key for the Redis Hash. By default, the prefix is set to getClass().getName() .
You can alter this default by setting @redisHash on the aggregate root level or by setting up a programmatic configuration.

However, the annotated keyspace supersedes any other configuration.

The following example shows how to set the keyspace configuration with the @EnableRedisRepositories annotation:

Example 19. Keyspace Setup via @EnableRedisRepositories

JAVA

@Configuration
@EnableRedisRepositories(keyspaceConfiguration = MyKeyspaceConfiguration.class)

public class ApplicationConfig {

//... RedisConnectionFactory and RedisTemplate Bean definitions omitted

public static class MyKeyspaceConfiguration extends KeyspaceConfiguration {

@Override
protected Iterable<KeyspaceSettings> initialConfiguration() {

return Collections.singleton(new KeyspaceSettings(Person.class, "people"));

}
}
}

The following example shows how to programmatically set the keyspace:

Example 20. Programmatic Keyspace setup

JAVA

@Configuration
@EnableRedisRepositories
public class ApplicationConfig {

102 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

//... RedisConnectionFactory and RedisTemplate Bean definitions omitted

@Bean
public RedisMappingContext keyValueMappingContext() {
return new RedisMappingContext(
new MappingConfiguration(new IndexConfiguration(), new MyKeyspaceConfiguration()));

public static class MyKeyspaceConfiguration extends KeyspaceConfiguration {
@Override

protected Iterable<KeyspaceSettings> initialConfiguration() {
return Collections.singleton(new KeyspaceSettings(Person.class, "people"));

}
}
}

13.5. Secondary Indexes

Secondary indexes are used to enable lookup operations based on native Redis structures. Values are written to the according
indexes on every save and are removed when objects are deleted or expire.

13.5.1. Simple Property Index

Given the sample person entity shown earlier, we can create an index for firstname by annotating the property with @Indexed , as
shown in the following example:

Example 21. Annotation driven indexing

JAVA
@RedisHash("people")

public class Person {

103 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

@Id String id;

@Indexed String firstname;
String lastname;

Address address;

}

Indexes are built up for actual property values. Saving two Persons (for example, "rand" and "aviendha") results in setting up
indexes similar to the following:

TEXT
SADD people:firstname:rand e2c7dcee-b8cd-4424-883e-736ce564363e

SADD people:firstname:aviendha a9d4b3a@-50d3-4538-a2fc-f7fc2581ee56

It is also possible to have indexes on nested elements. Assume Address has a city property thatis annotated with @iIndexed . In
that case, once person.address.city iSnot null , we have Sets for each city, as shown in the following example:

TEXT
SADD people:address.city:tear e2c7dcee-b8cd-4424-883e-736ce564363e

Furthermore, the programmatic setup lets you define indexes on map keys and list properties, as shown in the following example:

JAVA
@RedisHash("people")

public class Person {

// ... other properties omitted
Map<String,String> attributes; 1
Map<String Person> relatives; 2

104 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

List<Address> addresses; 3

1 SADD people:attributes.map-key:map-value e2c7dcee-b8cd-4424-883e-736ce564363e
2 SADD people:relatives.map-key.firstname:tam e2c7dcee-b8cd-4424-883e-736ce564363e

3 SADD people:addresses.city:tear e2c7dcee-b8cd-4424-883e-736ce564363e

Indexes cannot be resolved on References.

As with keyspaces, you can configure indexes without needing to annotate the actual domain type, as shown in the following
example:

Example 22. Index Setup with @EnableRedisRepositories

JAVA
@Configuration

@EnableRedisRepositories(indexConfiguration = MyIndexConfiguration.class)
public class ApplicationConfig {

//... RedisConnectionFactory and RedisTemplate Bean definitions omitted
public static class MyIndexConfiguration extends IndexConfiguration {
@Override

protected Iterable<IndexDefinition> initialConfiguration() {
return Collections.singleton(new SimpleIndexDefinition("people", "firstname"));

}
}

105 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Again, as with keyspaces, you can programmatically configure indexes, as shown in the following example:

Example 23. Programmatic Index setup

JAVA
@Configuration

@EnableRedisRepositories
public class ApplicationConfig {

//... RedisConnectionFactory and RedisTemplate Bean definitions omitted

@Bean
public RedisMappingContext keyValueMappingContext() {
return new RedisMappingContext(
new MappingConfiguration(
new KeyspaceConfiguration(), new MyIndexConfiguration()));

public static class MyIndexConfiguration extends IndexConfiguration {

@Override
protected Iterable<IndexDefinition> initialConfiguration() {
return Collections.singleton(new SimpleIndexDefinition("people", "firstname"));

}
}
}

13.5.2. Geospatial Index

Assume the Address type contains a location property of type point that holds the geo coordinates of the particular address.
By annotating the property with @GeoIndexed , Spring Data Redis adds those values by using Redis Geo commands, as shown in
the following example:

106 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

JAVA
@RedisHash("people")

public class Person {
Address address;

// ... other properties omitted

public class Address {
@GeoIndexed Point location;

// ... other properties omitted

public interface PersonRepository extends CrudRepository<Person, String> {
List<Person> findByAddressLocationNear(Point point, Distance distance); 1

List<Person> findByAddressLocationWithin(Circle circle); 2

Person rand = new Person("rand", "al'thor");
rand. setAddress(new Address(new Point(13.361389D, 38.115556D)));

repository.save(rand); 3

repository.findByAddressLocationNear(new Point(15D, 37D), new Distance(200)); 4

-

Query method declaration on a nested property, using point and Distance .
2 Query method declaration on a nested property, using circle to search within.
3 GEOADD people:address:location 13.361389 38.115556 e2c7dcee-b8cd-4424-883e-736ce564363e

4 GEORADIUS people:address:location 15.0 37.0 200.0 km

107 von 142 22.11.2021. 15:58

Spring Data Redis

108 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

In the preceding example the, longitude and latitude values are stored by using Geoapd that use the object’s id as the member’s
name. The finder methods allow usage of circle or Point, Distance combinations for querying those values.

It is not possible to combine near and within with other criteria.

13.6. Query by Example

13.6.1. Introduction

This chapter provides an introduction to Query by Example and explains how to use it.

Query by Example (QBE) is a user-friendly querying technique with a simple interface. It allows dynamic query creation and does
not require you to write queries that contain field names. In fact, Query by Example does not require you to write queries by using
store-specific query languages at all.

13.6.2. Usage

The Query by Example API consists of three parts:

» Probe: The actual example of a domain object with populated fields.

e ExampleMatcher : The ExampleMatcher carries details on how to match particular fields. It can be reused across multiple
Examples.

e Example : An Example consists of the probe and the ExampleMatcher . It is used to create the query.

Query by Example is well suited for several use cases:

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

¢ Querying your data store with a set of static or dynamic constraints.
e Frequent refactoring of the domain objects without worrying about breaking existing queries.

* Working independently from the underlying data store API.

Query by Example also has several limitations:

e No support for nested or grouped property constraints, such as firstname = ?0 or (firstname = ?1 and lastname = ?2) .

¢ Only supports starts/contains/ends/regex matching for strings and exact matching for other property types.

Before getting started with Query by Example, you need to have a domain object. To get started, create an interface for your
repository, as shown in the following example:

Example 24. Sample Person object

JAVA
public class Person {

@1d

private String id;
private String firstname;
private String lastname;
private Address address;

// .. getters and setters omitted

The preceding example shows a simple domain object. You can use it to create an Example . By default, fields having nul1l values
are ignored, and strings are matched by using the store specific defaults.

Inclusion of properties into a Query by Example criteria is based on nullability. Properties using primitive types (int ,

109 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

double , ...) are always included unless ignoring the property path.

Examples can be built by either using the of factory method or by using ExampleMatcher . Example isimmutable. The following
listing shows a simple Example:

Example 25. Simple Example

JAVA

Person person = new Person(); 1
person.setFirstname("Dave"); 2
Example<Person> example = Example.of(person); 3

1 Create a new instance of the domain object.
2 Setthe properties to query.

3 Create the Example .
You can run the example queries by using repositories. To do so, let your repository interface extend QueryByExampleExecutor<T> .

The following listing shows an excerpt from the QueryByExampleExecutor interface:

Example 26. The QueryByExampleExecutor

110 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

JAVA
public interface QueryByExampleExecutor<T> {

<S extends T> S findOne(Example<S> example);
<S extends T> Iterable<S> findAll(Example<S> example);

// .. more functionality omitted.

}

13.6.3. Example Matchers

Examples are not limited to default settings. You can specify your own defaults for string matching, null handling, and property-
specific settings by using the ExampleMatcher , as shown in the following example:

Example 27. Example matcher with customized matching

JAVA

Person person = new Person(); 1
person.setFirstname("Dave"); 2
ExampleMatcher matcher = ExampleMatcher.matching() 3
.withIgnorePaths("lastname") 4
.withIncludeNullValues() 5
.withStringMatcher(StringMatcher.ENDING); 6

Example<Person> example = Example.of(person, matcher); 7

1 Create a new instance of the domain object.
2 Set properties.

3 Create an ExampleMatcher to expect all values to match.

111 von 142 22.11.2021. 15:58

Spring Data Redis

112 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

It is usable at this stage even without further configuration.
4 Construct a new ExampleMatcher toignore the lastname property path.
5 Construct a new ExampleMatcher to ignore the lastname property path and to include null values.

6 Construct a new ExampleMatcher toignore the lastname property path, to include null values, and to perform suffix
string matching.

7 Create a new Example based on the domain object and the configured ExampleMatcher .

By default, the ExamplemMatcher expects all values set on the probe to match. If you want to get results matching any of the
predicates defined implicitly, use ExampleMatcher.matchingAny() .

You can specify behavior for individual properties (such as "firstname" and "lastname" or, for nested properties, "address.city").
You can tune it with matching options and case sensitivity, as shown in the following example:

Example 28. Configuring matcher options

JAVA
ExampleMatcher matcher = ExampleMatcher.matching()

.withMatcher("firstname", endsWith())
.withMatcher("lastname", startsWith().ignoreCase());

}

Another way to configure matcher options is to use lambdas (introduced in Java 8). This approach creates a callback that asks the
implementor to modify the matcher. You need not return the matcher, because configuration options are held within the matcher
instance. The following example shows a matcher that uses lambdas:

Example 29. Configuring matcher options with lambdas

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

JAVA
ExampleMatcher matcher = ExampleMatcher.matching()

.withMatcher("firstname", match -> match.endsWith())
.withMatcher("firstname", match -> match.startsWith());

}

Queries created by Example use a merged view of the configuration. Default matching settings can be set at the ExampleMatcher
level, while individual settings can be applied to particular property paths. Settings that are set on ExampleMatcher are inherited by
property path settings unless they are defined explicitly. Settings on a property patch have higher precedence than default
settings. The following table describes the scope of the various ExampleMatcher settings:

Table 11. Scope of ExampleMatcher settings

Setting Scope
Null-handling ExampleMatcher
String matching ExampleMatcher and property path

Ignoring properties Property path
Case sensitivity ExampleMatcher and property path

Value Property path
transformation

13.6.4. Running an Example

The following example uses Query by Example against a repository:

113 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Example 30. Query by Example using a Repository

JAVA
interface PersonRepository extends QueryByExampleExecutor<Person> {

}
class PersonService {
@Autowired PersonRepository personRepository;

List<Person> findPeople(Person probe) {
return personRepository.findAll(Example.of(probe));

}
}

Redis Repositories support, with their secondary indexes, a subset of Spring Data’s Query by Example features. In particular, only
exact, case-sensitive, and non-null values are used to construct a query.

Secondary indexes use set-based operations (Set intersection, Set union) to determine matching keys. Adding a property to the
query that is not indexed returns no result, because no index exists. Query by Example support inspects indexing configuration to
include only properties in the query that are covered by an index. This is to prevent accidental inclusion of non-indexed
properties.

Case-insensitive queries and unsupported stringMatcher instances are rejected at runtime.
The following list shows the supported Query by Example options:

e Case-sensitive, exact matching of simple and nested properties
¢ Any/All match modes
 Value transformation of the criteria value

e Exclusion of null values from the criteria

114 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

The following list shows properties not supported by Query by Example:

» Case-insensitive matching

Regex, prefix/contains/suffix String-matching

Querying of Associations, Collection, and Map-like properties

Inclusion of null values from the criteria

findAll with sorting

13.7. Time To Live

Objects stored in Redis may be valid only for a certain amount of time. This is especially useful for persisting short-lived objects in
Redis without having to remove them manually when they reach their end of life. The expiration time in seconds can be set with
@RedisHash(timeToLive=..) as well as by using KeyspaceSettings (see Keyspaces).

More flexible expiration times can be set by using the @TimeToLive annotation on either a numeric property or a method.
However, do not apply @TimeToLive on both a method and a property within the same class. The following example shows the
@TimeToLive annotation on a property and on a method:

Example 31. Expirations

JAVA
public class TimeToLiveOnProperty {

@Id
private String id;

@TimeToLive

private Long expiration;

}

public class TimeToLiveOnMethod {

115 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

@Id
private String id;

@TimeToLive
public long getTimeTolLive() {
return new Random().nextLong();
}
}

Annotating a property explicitly with @TimeToLive reads back the actual TTL or pTTL value from Redis. -1 indicates that the
object has no associated expiration.

The repository implementation ensures subscription to Redis keyspace notifications via RedisMessagelListenerContainer .

When the expiration is set to a positive value, the corresponding expIRE command is run. In addition to persisting the original, a
phantom copy is persisted in Redis and set to expire five minutes after the original one. This is done to enable the Repository
support to publish RediskeyExpiredevent , holding the expired value in Spring’'s ApplicationEventPublisher whenever a key expires,
even though the original values have already been removed. Expiry events are received on all connected applications that use

Spring Data Redis repositories.
By default, the key expiry listener is disabled when initializing the application. The startup mode can be adjusted in
@EnableRedisRepositories Or RediskeyValueAdapter to startthe listener with the application or upon the first insert of an entity

with a TTL. See Enablekeyspacetvents for possible values.

The RediskeyExpiredEvent holds a copy of the expired domain object as well as the key.

Delaying or disabling the expiry event listener startup impacts RediskeyExpiredEvent publishing. A disabled event listener

116 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

does not publish expiry events. A delayed startup can cause loss of events because of the delayed listener initialization.

The keyspace notification message listener alters notify-keyspace-events settings in Redis, if those are not already set.
Existing settings are not overridden, so you must set up those settings correctly (or leave them empty). Note that conFiG is
disabled on AWS ElastiCache, and enabling the listener leads to an error. To work around this behavior, set the
keyspaceNotificationsConfigParameter parameter to an empty string. This prevents conFIG command usage.

Redis Pub/Sub messages are not persistent. If a key expires while the application is down, the expiry event is not processed,
which may lead to secondary indexes containing references to the expired object.

@EnableKeyspaceEvents(shadowCopy = OFF) disable storage of phantom copies and reduces data size within Redis.
RedisKeyExpiredEvent Will only contain the id of the expired key.

13.8. Persisting References

Marking properties with @reference allows storing a simple key reference instead of copying values into the hash itself. On

loading from Redis, references are resolved automatically and mapped back into the object, as shown in the following example:

Example 32. Sample Property Reference

TEXT
_class = org.example.Person

id = e2c7dcee-b8cd-4424-883e-736ce564363e

117 von 142

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

firstname = rand
lastname = al’thor
mother = people:a9d4b3a@-50d3-4538-a2fc-f7fc2581lee56 1

1 Reference stores the whole key (keyspace:id) of the referenced object.

Referenced Objects are not persisted when the referencing object is saved. You must persist changes on referenced objects
separately, since only the reference is stored. Indexes set on properties of referenced types are not resolved.

13.9. Persisting Partial Updates

In some cases, you need not load and rewrite the entire entity just to set a new value within it. A session timestamp for the last
active time might be such a scenario where you want to alter one property. partialupdate lets you define set and delete
actions on existing objects while taking care of updating potential expiration times of both the entity itself and index structures.

The following example shows a partial update:

Example 33. Sample Partial Update

JAVA
PartialUpdate<Person> update = new PartialUpdate<Person>("e2c7dcee", Person.class)

.set("firstname", "mat") 1
.set("address.city", "emond's field") 2
.del("age"); 3

template.update(update);

update = new PartialUpdate<Person>("e2c7dcee", Person.class)
.set("address", new Address("caemlyn", "andor")) 4
.set("attributes", singletonMap(“eye-color", "grey")); 5

118 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

template.update(update);

update = new PartialUpdate<Person>("e2c7dcee", Person.class)
.refreshTtl(true); 6
.set("expiration", 1000);

template.update(update);

1 Set the simple firstname propertyto mat .

2 Set the simple 'address.city' property to 'emond'’s field' without having to pass in the entire object.
This does not work when a custom conversion is registered.

3 Remove the age property.
4 Setcomplex address property.
5 Seta map of values, which removes the previously existing map and replaces the values with the given ones.

6 Automatically update the server expiration time when altering Time To Live.

Updating complex objects as well as map (or other collection) structures requires further interaction with Redis to determine
existing values, which means that rewriting the entire entity might be faster.

13.10. Queries and Query Methods

Query methods allow automatic derivation of simple finder queries from the method name, as shown in the following example:

Example 34. Sample Repository finder Method

119 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

JAVA
public interface PersonRepository extends CrudRepository<Person, String> {

List<Person> findByFirstname(String firstname);

}

Please make sure properties used in finder methods are set up for indexing.

Query methods for Redis repositories support only queries for entities and collections of entities with paging.

Using derived query methods might not always be sufficient to model the queries to run. Rediscallback offers more control over
the actual matching of index structures or even custom indexes. To do so, provide a RedisCallback thatreturns a single or
Iterable set of id values, as shown in the following example:

Example 35. Sample finder using RedisCallback

JAVA
String user = //...

List<RedisSession> sessionsByUser = template.find(new RedisCallback<Set<byte[]>>() {

public Set<byte[]> doInRedis(RedisConnection connection) throws DataAccessException {
return connection

.SMembers("sessions:securityContext.authentication.principal.username:
}}, RedisSession.class);

+ user);

120 von 142

22.11.2021. 15:58

Spring Data Redis

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

The following table provides an overview of the keywords supported for Redis and what a method containing that keyword

essentially translates to:

Table 12. Supported keywords inside method names

Keyword
And

or

Is, Equals
IsTrue
IsFalse

Top,First

Sample

findByLastnameAndFirstname

findByLastnameOrFirstname

findByFirstname , findByFirstnameIs , findByFirstnameEquals
FindByAliveIsTrue

findByAliveIsFalse

findFirst1@ByFirstname , findTop5ByFirstname

13.10.1. Sorting Query Method results

Redis snippet

SINTER ..:firstname:rand ..:lastname:al’thor
SUNION ..:firstname:rand ..:lastname:al’thor
SINTER ..:firstname:rand

SINTER ..:alive:1

SINTER ..:alive:@

Redis repositories allow various approaches to define sorting order. Redis itself does not support in-flight sorting when retrieving

hashes or sets. Therefore, Redis repository query methods construct a comparator thatis applied to the result before returning

results as List . Let's take a look at the following example:

Example 36. Sorting Query Results

interface PersonRepository extends RedisRepository<Person, String> {

121 von 142

JAVA

22.11.2021. 15:58

Spring Data Redis

List<Person> findByFirstnameOrderByAgeDesc(String firstname); 1

List<Person> findByFirstname(String firstname, Sort sort); 2

}

1 Static sorting derived from method name.

2 Dynamic sorting using a method argument.

13.11. Redis Repositories Running on a Cluster

You can use the Redis repository support in a clustered Redis environment. See the “Redis Cluster” section for ConnectionFactory
configuration details. Still, some additional configuration must be done, because the default key distribution spreads entities and

secondary indexes through out the whole cluster and its slots.

The following table shows the details of data on a cluster (based on previous examples):

Key Type Slot Node

people:e2c7dcee-b8cd-4424-883e-736ce564363e id for hash 15171 127.0.0.1:7381
people:a9d4b3a0-50d3-4538-a2fc-f7fc2581ee56 id for hash 7373 127.0.0.1:7380

people:firstname:rand index 1700 127.0.0.1:7379

Some commands (such as SINTER and SUNION) can only be processed on the server side when all involved keys map to the
same slot. Otherwise, computation has to be done on client side. Therefore, it is useful to pin keyspaces to a single slot,
which lets make use of Redis server side computation right away. The following table shows what happens when you do

122 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

(note the change in the slot column and the port value in the node column):

Key Type Slot Node
{people}.e2c7dcee-b8cd-4424-883e-736ce564363e id for hash 2399 127.0.0.1:7379
{people}:a9d4b3a0-50d3-4538-a2fc-f7fc2581ee56 id for hash 2399 127.0.0.1:7379

{people}:firstname:rand index 2399 127.0.0.1:7379

Define and pin keyspaces by using @RedisHash("{yourkeyspace}") to specific slots when you use Redis cluster.

13.12. CDl Integration

Instances of the repository interfaces are usually created by a container, for which Spring is the most natural choice when working
with Spring Data. Spring offers sophisticated for creating bean instances. Spring Data Redis ships with a custom CDI extension that
lets you use the repository abstraction in CDI environments. The extension is part of the JAR, so, to activate it, drop the Spring
Data Redis JAR into your classpath.

You can then set up the infrastructure by implementing a CDI Producer for the RedisConnectionFactory and RedisOperations , as
shown in the following example:

JAVA
class RedisOperationsProducer {

@Produces
RedisConnectionFactory redisConnectionFactory() {

123 von 142 22.11.2021. 15:58

Spring Data Redis

124 von 142

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

JedisConnectionFactory jedisConnectionFactory = new JedisConnectionFactory(new RedisStandaloneConfiguration());
jedisConnectionFactory.afterPropertiesSet();

return jedisConnectionFactory;

}

void disposeRedisConnectionFactory(@Disposes RedisConnectionFactory redisConnectionFactory) throws Exception {

if (redisConnectionFactory instanceof DisposableBean) {
((DisposableBean) redisConnectionFactory).destroy();

@Produces
@ApplicationScoped
RedisOperations<byte[], byte[]> redisOperationsProducer(RedisConnectionFactory redisConnectionFactory) {

RedisTemplate<byte[], byte[]> template = new RedisTemplate<byte[], byte[]>();
template.setConnectionFactory(redisConnectionFactory);

template.afterPropertiesSet();

return template;

The necessary setup can vary, depending on your JavaEE environment.

The Spring Data Redis CDI extension picks up all available repositories as CDI beans and creates a proxy for a Spring Data
repository whenever a bean of a repository type is requested by the container. Thus, obtaining an instance of a Spring Data
repository is a matter of declaring an @Injected property, as shown in the following example:

class RepositoryClient {

@Inject
PersonRepository repository;

JAVA

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

public void businessMethod() {
List<Person> people = repository.findAll();

}
}

A Redis Repository requires RediskeyvalueAdapter and RediskeyvalueTemplate instances. These beans are created and managed by
the Spring Data CDI extension if no provided beans are found. You can, however, supply your own beans to configure the specific
properties of RediskeyvalueAdapter and RedisKeyValueTemplate .

13.13. Redis Repositories Anatomy

Redis as a store itself offers a very narrow low-level API leaving higher level functions, such as secondary indexes and query
operations, up to the user.

This section provides a more detailed view of commands issued by the repository abstraction for a better understanding of
potential performance implications.

Consider the following entity class as the starting point for all operations:

Example 37. Example entity

JAVA
@RedisHash("people")

public class Person {
@Id String id;
@Indexed String firstname;
String lastname;
Address hometown;

public class Address {

@GeoIndexed Point location;

125 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

13.13.1. Insert new

JAVA
repository.save(new Person("rand", "al'thor"));

TEXT
HMSET "people:19315449-cda2-4f5c-b696-9cb8018falf9" " class" "Person" "id" "19315449-cda2-4f5c-b696-9cb8018falf9" "firstname" '

SADD "people" "19315449-cda2-4f5c-b696-9cb8018falfo" 2
SADD “people:firstname:rand" "19315449-cda2-4f5c-b696-9cb8018falf9” 3
SADD "people:19315449-cda2-4f5c-b696-9cb8018falf9:idx" "people:firstname:rand"” 4

1 Save the flattened entry as hash.
2 Add the key of the hash written in <1> to the helper index of entities in the same keyspace.
3 Add the key of the hash written in <2> to the secondary index of firstnames with the properties value.

4 Add the index of <3> to the set of helper structures for entry to keep track of indexes to clean on delete/update.

13.13.2. Replace existing

JAVA
repository.save(new Person("e82908cf-e7d3-47c2-9eec-b4e0967adoc9", "Dragon Reborn", "al'thor"));

TEXT

DEL "people:e82908cf-e7d3-47c2-9eec-b4e0967adoco" 1
HMSET "people:e82908cf-e7d3-47c2-9eec-bde@967adoOco" "_class" "Person" "id" "e82908cf-e7d3-47c2-9eec-b4e@967adoc9"” "firstnan
SADD "people"” "eB82908cf-e7d3-47c2-9eec-b4e@967adoOco" 3
SMEMBERS "people:e82908cf-e7d3-47c2-9eec-b4e0967adoc9:idx" 4

126 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

TYPE "people:firstname:rand” 5
SREM "people:firstname:rand” "e82908cf-e7d3-47c2-9eec-b4e0967adoco" 6
DEL "people:e82908cf-e7d3-47c2-9eec-b4e0967adoOc9:idx" 7
SADD "people:firstname:Dragon Reborn" "e82908cf-e7d3-47c2-9eec-b4e@967adoc9” 8
SADD "people:e82908cf-e7d3-47c2-9eec-b4e@967ad0c9:idx" "people:firstname:Dragon Reborn" 9

1 Remove the existing hash to avoid leftovers of hash keys potentially no longer present.

2 Save the flattened entry as hash.

3 Add the key of the hash written in <1> to the helper index of entities in the same keyspace.

4 Get existing index structures that might need to be updated.

5 Check if the index exists and what type it is (text, geo, ...).

6 Remove a potentially existing key from the index.

7 Remove the helper holding index information.

8 Add the key of the hash added in <2> to the secondary index of firstnames with the properties value.

9 Add the index of <6> to the set of helper structures for entry to keep track of indexes to clean on delete/update.

13.13.3. Save Geo Data

Geo indexes follow the same rules as normal text based ones but use geo structure to store values. Saving an entity that uses a
Geo-indexed property results in the following commands:

TEXT
GEOADD "people:hometown:location” "13.361389" "38.115556" "76900e94-b057-44bc-abcf-8126d51a621b" 1

SADD "people:76900e94-b057-44bc-abcf-8126d51a621b:idx" "people:hometown:location” 2

1 Add the key of the saved entry to the the geo index.

127 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

2 Keep track of the index structure.

13.13.4. Find using simple index

JAVA
repository.findByFirstname("egwene");

TEXT

SINTER "people:firstname:egwene" 1
HGETALL "people:d70091b5-0b9a-4c@a-9551-519e61bc9ef3" 2
HGETALL ...

1 Fetch keys contained in the secondary index.

2 Fetch each key returned by <1> individually.

13.13.5. Find using Geo Index

128 von 142 22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

JAVA
repository.findByHometownLocationNear(new Point(15, 37), new Distance(200, KILOMETERS));

TEXT
GEORADIUS "people:hometown:location" "15.0" "37.0" "200.0" "km" 1

HGETALL "people:76900e94-b057-44bc-abcf-8126d51a621b" 2
HGETALL

1 Fetch keys contained in the secondary index.

2 Fetch each key returned by <1> individually.

Appendixes

Appendix Document Structure
The appendix contains various additional detail that complements the information in the rest of the reference documentation:

¢ “Schema” defines the schemas provided by Spring Data Redis.

¢ “Command Reference” details which commands are supported by RedisTemplate .

Appendix A: Schema

Spring Data Redis Schema (redis-namespace)

129 von 142 22.11.2021. 15:58

Spring Data Redis

130 von 142

Appendix B: Command Reference

Supported Commands

Table 13. Redis commands supported by RedisTemplate

Command

APPEND

AUTH

BGREWRITEAOF

BGSAVE

BITCOUNT

BITFIELD

BITOP

BLPOP

BRPOP

BRPOPLPUSH

CLIENT KILL

Template
Support

X

X

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

131 von 142

Command

CLIENT GETNAME

CLIENT LIST

CLIENT SETNAME

CLUSTER SLOTS

COMMAND

COMMAND COUNT

COMMAND GETKEYS

COMMAND INFO

CONFIG GET

CONFIG RESETSTAT

CONFIG REWRITE
CONFIG SET
DBSIZE

DEBUG OBJECT

DEBUG SEGFAULT

Template
Support

X

X

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

132 von 142

Command

DECR

DECRBY

DEL

DISCARD

DUMP

ECHO

EVAL

EVALSHA

EXEC

EXISTS

EXPIRE

EXPIREAT

FLUSHALL

FLUSHDB

GEOADD

Template
Support

X

X

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

133 von 142

Command

GEODIST

GEOHASH

GEOPOS

GEORADIUS

GEORADIUSBYMEMBER

GEOSEARCH

GEOSEARCHSTORE

GET

GETBIT

GETRANGE

GETSET

HDEL

HEXISTS

HGET

HGETALL

Template
Support

X

X

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

134 von 142

Command

HINCRBY

HINCRBYFLOAT

HKEYS

HLEN

HMGET

HMSET

HSCAN

HSET

HSETNX

HVALS

INCR

INCRBY

INCRBYFLOAT

INFO

KEYS

Template
Support

X

X

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

135 von 142

Command

LASTSAVE

LINDEX

LINSERT

LLEN

LPOP

LPUSH

LPUSHX

LRANGE

LREM

LSET

LTRIM

MGET

MIGRATE

MONITOR

MOVE

Template
Support

X

X

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

136 von 142

Command

MSET
MSETNX
MULTI
OBJECT
PERSIST
PEXIPRE
PEXPIREAT
PFADD
PFCOUNT
PFMERGE
PING
PSETEX
PSUBSCRIBE
PTTL

PUBLISH

Template
Support

X

X

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

137 von 142

Command

PUBSUB

PUBSUBSCRIBE

QUIT

RANDOMKEY

RENAME

RENAMENX

RESTORE

ROLE

RPOP

RPOPLPUSH

RPUSH

RPUSHX

SADD

SAVE

SCAN

Template

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Command Template
Support
SCARD X
SCRIPT EXITS X
SCRIPT FLUSH X
SCRIPT KILL X
SCRIPT LOAD X
SDIFF X
SDIFFSTORE X
SELECT X
SENTINEL FAILOVER X

SENTINEL GET-MASTER-ADD-BY-NAME -

SENTINEL MASTER -

SENTINEL MASTERS X
SENTINEL MONITOR X
SENTINEL REMOVE X

SENTINEL RESET -

138 von 142 22.11.2021. 15:58

Spring Data Redis

139 von 142

Command

SENTINEL SET

SENTINEL SLAVES

SET

SETBIT

SETEX

SETNX

SETRANGE

SHUTDOWN

SINTER

SINTERSTORE

SISMEMBER

SLAVEOF

SLOWLOG

SMEMBERS

SMOVE

Template

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

140 von 142

Command

SORT

SPOP

SRANDMEMBER

SREM

SSCAN

STRLEN

SUBSCRIBE

SUNION

SUNIONSTORE

SYNC

TIME

TTL

TYPE

UNSUBSCRIBE

UNWATCH

Template
Support

X

X

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis

141 von 142

Command

WATCH

ZADD

ZCARD

ZCOUNT

ZINCRBY

ZINTERSTORE

ZLEXCOUNT

ZRANGE

ZRANGEBYLEX

ZREVRANGEBYLEX

ZRANGEBYSCORE

ZRANK

ZREM

ZREMRANGEBYLEX

ZREMRANGEBYRANK

Template
Support

X

X

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

22.11.2021. 15:58

Spring Data Redis https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/#pubsub

Command Template
Support
ZREVRANGE X
ZREVRANGEBYSCORE X
ZREVRANK X
ZSCAN X
ZSCORE X
ZUNINONSTORE X
Version 2.6.0

Last updated 2021-11-12 11:05:07 +0100

142 von 142 22.11.2021. 15:58

